Description
Problem A
Expression Bracketing
Input: standard input
Output: standard output
Time Limit: 1 second
Memory Limit: 32 MB
Inthis problem you will have to find in how many ways n letters can be bracketed so that the bracketing is non-binarybracketing. For example 4 lettershave 11 possible bracketing:
xxxx, (xx)xx, x(xx)x, xx(xx),(xxx)x, x(xxx), ((xx)x)x, (x(xx))x, (xx)(xx), x((xx)x), x(x(xx)). Of these the first sixbracketing are not binary. Given the number of letters you will have to findthe total number of non-binary bracketing.
Input
Theinput file contains several lines of input. Each line contains a single integern (0<n<=26). Input isterminated by end of file.
Output
For each line of input produce one line of outputwhich denotes the number of non binary bracketing with n letters.
Sample Input
3
4
5
10
Sample Output
1
6
31
98187
题意:假设p。q是要求的串,那么(p。q)也满足。求全部不可能的条件
思路:我们先求满足的,能够想象的到,这个跟卡特兰数的思路是类似的,都是将串分成(1, n-1), (2, n-2)....考虑的,可是全部的情况可能就难求了。了解后是个叫
Super Catalan Number 的序列,相减求结果,可是注意卡特兰数都从0開始的
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> typedef long long ll; using namespace std; const int maxn = 30; int n; ll catalan[maxn], supper[maxn]; void init() { supper[0] = supper[1] = supper[2] = 1; for (int i = 3; i < maxn; i++) supper[i] = (3*(2*i-3)*supper[i-1] - (i-3)*supper[i-2])/i; catalan[0] = catalan[1] = 1; catalan[2] = 2; catalan[3] = 5; for (int i = 4; i < maxn; i++) for (int j = 0; j < i; j++) catalan[i] += catalan[j] * catalan[i-j-1]; } int main() { init(); while (scanf("%d", &n) != EOF) { printf("%lld ", supper[n]-catalan[n-1]); } return 0; }
版权声明:本文博主原创文章,博客,未经同意不得转载。