zoukankan      html  css  js  c++  java
  • HDU-4432-Sum of divisors ( 2012 Asia Tianjin Regional Contest )

    Sum of divisors

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4318    Accepted Submission(s): 1382


    Problem Description
    mmm is learning division, she's so proud of herself that she can figure out the sum of all the divisors of numbers no larger than 100 within one day!
    But her teacher said "What if I ask you to give not only the sum but the square-sums of all the divisors of numbers within hexadecimal number 100?

    " mmm get stuck and she's asking for your help.
    Attention, because mmm has misunderstood teacher's words, you have to solve a problem that is a little bit different.
    Here's the problem, given n, you are to calculate the square sums of the digits of all the divisors of n, under the base m.

     

    Input
    Multiple test cases, each test cases is one line with two integers.
    n and m.(n, m would be given in 10-based)
    1≤n≤109
    2≤m≤16
    There are less then 10 test cases.
     

    Output
    Output the answer base m.
     

    Sample Input
    10 2 30 5
     

    Sample Output
    110 112
    Hint
    Use A, B, C...... for 10, 11, 12...... Test case 1: divisors are 1, 2, 5, 10 which means 1, 10, 101, 1010 under base 2, the square sum of digits is 1^2+ (1^2 + 0^2) + (1^2 + 0^2 + 1^2) + .... = 6 = 110 under base 2.
     

    Source
     


    题目:看hint都能看懂啥意思吧。就是去找因数。挺简单~


    AC代码:


    #include<stdio.h>
    #include<iostream>
    #include<algorithm>
    #include<string.h>
    #include<math.h>
    using namespace std;
    
    int bit[100];
    int cnt;
    
    void change(int n,int base)
    {
        cnt=0;
        while(n)
        {
            bit[cnt++]=n%base;
            n/=base;
        }
    }
    int main()
    {
        int n, m;
        while(scanf("%d %d", &n, &m)!=EOF)
        {
            int sum=0;
            int t=(int)sqrt(n*1.0);
            for(int i = 1; i <= t; i++)
            {
                if(n%i == 0)
                {
                    int tmp = i;
                    while(tmp)
                    {
                        sum += ((tmp%m)*(tmp%m));
                        tmp /= m;
                    }
                    tmp = n/i;
                    if(tmp == i)continue;
                    while(tmp)
                    {
                        sum += ((tmp%m) * (tmp%m));
                        tmp /= m;
                    }
                }
            }
            change(sum, m);
            for(int i = cnt-1; i >= 0; i--)
            {
                if(bit[i] > 9) printf("%c", bit[i]-10+'A');
                else printf("%d", bit[i]);
            }
            putchar(10); 
        }
        return 0;
    }



    版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 相关阅读:
    用命令行工具安装 卸载 设置 .Net服务
    oracle imp 数据时实现插入到表中 不覆盖
    Oracle导出 Exp的使用
    Linux下的tar压缩解压缩命令详解
    设计模式 配置器
    设计模式 概括说明
    设计模式 创建型模式
    设计模式 组成 & 装饰 & 外观
    设计模式 单件 & 原型
    设计模式 享元 & 代理
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/4815974.html
Copyright © 2011-2022 走看看