zoukankan      html  css  js  c++  java
  • sgu209:Areas(计算几何)

    意甲冠军:
    给一些直。这架飞机被分成了很多这些线性块。每个块的需求面积封闭曲线图。

    分析:
    ①我们应要求交点22的直线;
    ②每行上的交点的重排序,借此来离散一整行(正反两条边);
    ③对于连向一个点的几条线段,对它们进行极角排序,相邻的两条线段我们给它们之间连一条边,我们脑补一下应该能够知道如何能够保证逆时针连边;
    ④找循环,利用叉积求面积。

    ps. vector的调试真心不爽…

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <vector>
    #define pb push_back
    #include <utility>
    #define fi first
    #define se second
    #define mp make_pair
    #include <stack>
    using namespace std;
    const int MAXN = 100;
    const int MAXE = MAXN*MAXN<<1;
    const double eps = 1e-8;
    typedef double DB;
    
    int n;
    #define sqr(x) ((x)*(x))
    struct pot
    {
        double x, y;    
        pot(double x = 0, double y = 0):x(x), y(y){}
        inline double len() {return sqrt(sqr(x)+sqr(y));}
        inline void read() {scanf("%lf%lf", &x, &y);}
        inline pot unit() 
        {
            double d = len();
            return pot(x/d, y/d);
        }
        inline double ang() {return atan2(y, x);}
    };
    typedef pot vec;
    struct Line
    {
        pot p;
        vec v;
        Line(){}
        Line(pot p, vec v):p(p), v(v){}
    }lines[MAXN];
    vector<pot> points;
    
    struct Edge
    {
        int sz;
        int head[MAXE], to[MAXE], ne[MAXE];
        Edge()
        {
            sz = 0;
            memset(head, -1, sizeof(head)); 
        }
        inline void add(int u, int v)
        {
            to[sz] = v;ne[sz] = head[u];
            head[u] = sz++; 
        }
    }E;
    
    int next[MAXE];
    
    bool vis[MAXE];
    
    vector<DB> ans;
    
    inline int dcmp(double x)
    {
        if(fabs(x) <= eps) return 0;
        else return x>0?1:-1;   
    }
    
    inline pot operator + (const vec &a, const vec &b) {return vec(a.x+b.x, a.y+b.y);}
    inline pot operator - (const vec &a, const vec &b) {return vec(a.x-b.x, a.y-b.y);}
    inline double operator * (const vec &a, const vec &b) {return a.x*b.x+a.y*b.y;}
    inline double operator ^ (const vec &a, const vec &b) {return a.x*b.y-a.y*b.x;}
    inline pot operator * (const vec &a, double k) {return vec(a.x*k, a.y*k);}
    inline pot operator / (const vec &a, double k) {return vec(a.x/k, a.y/k);}
    inline bool operator < (const vec &a, const vec &b) {return dcmp(a.x-b.x) < 0 || (dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) < 0);}
    inline bool operator == (const vec &a, const vec &b) {return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;}
    
    inline pot get_line_intersection(const pot &p, const vec &v, const pot &q, const vec &w)
    {
        vec u = p-q;
        double t = (w^u)/(v^w);
        return p+v*t;
    }
    
    inline bool parallel(const Line &a, const Line &b) {return dcmp(a.v^b.v) == 0;}
    
    inline int get_pot_id(const pot &p) {return lower_bound(points.begin(), points.end(), p)-points.begin();}
    
    inline bool cmp(DB a, DB b) {return dcmp(a-b) == 0;}
    
    inline void init()
    {
        scanf("%d", &n);
        for(int i = 0; i < n; ++i)
        {
            pot a, b;
            a.read();b.read();
            lines[i] = Line(a, b-a);    
        }
        for(int i = 0; i < n; ++i)
            for(int j = i+1; j < n; ++j)
                if(!parallel(lines[i], lines[j]))
                    points.pb(get_line_intersection(lines[i].p, lines[i].v, lines[j].p, lines[j].v));
        sort(points.begin(), points.end());
        points.erase(unique(points.begin(), points.end()), points.end());
        for(int i = 0; i < n; ++i)
        {
            vector<DB> nodes;
            vec d = lines[i].v.unit();  
            for(int j = 0; j < n; ++j)
                if(!parallel(lines[i], lines[j]))
                {
                    pot inter = get_line_intersection(lines[i].p, lines[i].v, lines[j].p, lines[j].v);
                    nodes.pb((inter-lines[i].p)*d);
                }
            sort(nodes.begin(), nodes.end());
            nodes.erase(unique(nodes.begin(), nodes.end(), cmp), nodes.end());
            for(int j = 1, sz = nodes.size(); j < sz; ++j)
            {
                int a = get_pot_id(lines[i].p+d*nodes[j]);
                int b = get_pot_id(lines[i].p+d*nodes[j-1]);
                E.add(a, b);E.add(b, a);
            }
        }
        memset(next, -1, sizeof(next));
        for(int i = 0, sz = points.size(); i < sz; ++i)
        {
            vector<pair<DB, int> > PA;
            for(int j = E.head[i]; j != -1; j = E.ne[j])
                PA.pb(mp((points[E.to[j]]-points[i]).ang(), j));
            sort(PA.begin(), PA.end());
            for(int j = 0, sz = PA.size(); j < sz; ++j)
                next[PA[(j+1)%sz].se^1] = PA[j].se; 
        }
    }
    
    inline void work()
    {
        for(int i = 0; i < E.sz; ++i)
            if(!vis[i])
            {
                stack<int> s;
                int j = i;
                do
                {
                    if(!s.empty() && (s.top()^1) == j)
                        s.pop();
                    else s.push(j);
                    vis[j] = true;
                    j = next[j];
                    if(j == -1) break;
                }while(!vis[j]);
                if(i == j)
                {
                    DB area = 0;
                    while(!s.empty())
                    {
                        area += (points[E.to[s.top()^1]]^points[E.to[s.top()]]);
                        s.pop();
                    }
                    area *= 0.5; 
                    if(dcmp(area) > 0)
                        ans.pb(area);   
                }
            }
    }
    
    inline void print()
    {
        printf("%d
    ", ans.size());
        sort(ans.begin(), ans.end());
        for(int i = 0, sz = ans.size(); i < sz; ++i)
            printf("%.4lf
    ", ans[i]);
    }
    
    int main()
    {
        init();
        work();
        print();
        return 0;   
    }

    版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 相关阅读:
    zookeeper 入门知识
    MySQL: InnoDB的并发控制,锁,事务模型
    分布式理论: CAP、BASE (转)
    Nginx 入门了解
    基于RSA的前后端登陆密码加密JAVA实现(转)
    分库分表?如何做到永不迁移数据和避免热点? (转)
    node.js(一)
    c# 事件
    C#委托
    SQL Server控制执行计划
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/4848925.html
Copyright © 2011-2022 走看看