题目大意。N个区间覆盖[T1,T2]及相应的代价S,求从区间M到E的所有覆盖的最小代价是多少。
(1 <= N <= 10,000)。(0 <= M <= E <= 86,399).
思路是DP,首先将每一个区间依照T2从小到大排序,设dp(k)为从m覆盖到k所需最小代价,则有
dp(T2[i]) = min(dp(T2[i]), {dp(j) + Si, T1[i] - 1<=j <= T2[i]}),对于 {dp(j) + Si, T1[i] - 1<=j <= T2[i]}我们能够用线段树来进行优化,所以终于复杂度为O(n*logE)。
#include <stdio.h> #include <vector> #include <math.h> #include <string.h> #include <string> #include <iostream> #include <queue> #include <list> #include <algorithm> #include <stack> #include <map> #include <time.h> using namespace std; struct T { int t1; int t2; int S; }; #define MAXV 5000000001 long long BinTree[270000]; T cows[10001]; long long DP[86401]; template<class TYPE> void UpdateValue(TYPE st[],int i, TYPE value, int N, bool bMin) { i += N - 1; st[i] = value; while (i > 0) { i = (i - 1) / 2; if (bMin) { st[i] = min(st[i * 2 + 1], st[i * 2 + 2]); } else st[i] = max(st[i * 2 + 1], st[i * 2 + 2]); } } template<class TYPE> TYPE QueryST(TYPE st[], int a, int b, int l, int r, int k, bool bMin) { if (l > b || a > r) { return bMin ? MAXV : 0; } if (l >= a && b >= r) { return st[k]; } else { TYPE value1 = QueryST(st, a, b, l, (r + l) / 2, k * 2 + 1, bMin); TYPE value2 = QueryST(st, a, b, (r + l) / 2 + 1, r, k * 2 + 2, bMin); if (bMin) { return min(value1, value2); } else { return max(value1, value2); } } } int compT(const void* a1, const void* a2) { if (((T*)a1)->t2 - ((T*)a2)->t2 == 0) { return ((T*)a1)->t1 - ((T*)a2)->t1; } else return ((T*)a1)->t2 - ((T*)a2)->t2; } int main() { #ifdef _DEBUG freopen("e:\in.txt", "r", stdin); #endif int N, M, E; scanf("%d %d %d", &N, &M, &E); M++; E++; for (int i = 0; i < N; i++) { scanf("%d %d %d", &cows[i].t1, &cows[i].t2, &cows[i].S); cows[i].t1++; cows[i].t2++; } int maxe = 1; while (maxe < E) { maxe *= 2; } for (int i = 0; i < maxe * 2;i++) { BinTree[i] = MAXV; } for (int i = 0; i <= E;i++) { DP[i] = MAXV; } DP[M - 1] = 0; UpdateValue<long long>(BinTree, M - 1, 0, maxe, true); qsort(cows, N, sizeof(T), compT); for (int i = 0; i < N;i++) { DP[cows[i].t2] = min(DP[cows[i].t2], QueryST<long long>(BinTree, cows[i].t1 - 1, cows[i].t2, 0, maxe - 1, 0, true) + cows[i].S); UpdateValue<long long>(BinTree, cows[i].t2, DP[cows[i].t2], maxe, true); } if (E <= cows[N - 1].t2) { DP[E] = QueryST<long long>(BinTree, E, cows[N - 1].t2, 0, maxe - 1, 0, true); } if (DP[E] >= MAXV) { printf("-1 "); } else printf("%I64d ", DP[E]); return 0; }