zoukankan      html  css  js  c++  java
  • USACO Section 2.2 Subset Sums

    /*
    ID: lucien23
    PROG: subset
    LANG: C++
    */
    
    #include <iostream>
    #include <fstream>
    using namespace std;
    
    int main()
    {
    	ifstream infile("subset.in");
    	ofstream outfile("subset.out");
    	if(!infile || !outfile)
    	{
    		cout << "file operation failure!" << endl;
    		return -1;
    	}
    
    	int N;
    	infile >> N;
    	
    	if (N%4 != 0 && (N+1)%4 != 0)
    	{
    		outfile << 0 <<endl;
    		return 0;
    	}
    
    	/*
    	 * 穷举法,利用位运算。总是超时
    	 */
    /*	long long maxNum = ((long long)1 << N) - 1;
    	int count = 0;
    	for (long long i=1; i<maxNum; i++)
    	{
    		int sum0, sum1;
    		sum0 = sum1 = 0;
    		for (int j=0; j<N; j++)
    		{
    			long long temp = 1 << j;
    			if ((temp & i) == temp)
    			{
    				sum1 += j + 1;
    			} else {
    				sum0 += j + 1;
    			}
    		}
    		if (sum0 == sum1)
    		{
    			count++;
    		}
    	}
    	outfile << count/2 << endl;*/
    
    	/*
    	 * 动态规划
    	 * 要求前n个数分成总和相等的两个子集的方案数
    	 * 实际上就是求前n个数中的数能够组成总和为sum=n(n+1)/4的子集的数量
    	 * 这就能够用动态规划思想,即从这个子集是否包括n能够分两种情况
    	 * 即求前n-1个数中总和为sum-n和总和为sum的子集数目
    	 * 设s[i, j]为从前i个数中选择数字组成总和为j的子集的数量,则有
    	 * s[i, j] = s[i-1, j] + s[i-1, j-i]    ,    j - i >= 0
    	 * s[i, j] = s[i-1, j]                     ,    j - i < 0
    	 */
    
    	int sum = N * (N + 1) / 4;
    	long long **s = new long long*[N+1];
    	for (int i=0; i<=N; i++)
    	{
    		s[i] = new long long[sum+1]();
    	}
    
    	s[1][0] = s[1][1] = 1;
    	for (int i=2; i<=N; i++)
    	{
    		for (int j=0; j<=sum; j++)
    		{
    			if (i > j)//不能放i
    			{
    				s[i][j] = s[i-1][j];
    			} else {//能够放i
    				s[i][j] = s[i-1][j] + s[i-1][j-i];
    			}
    		}
    	}
    
    	outfile << s[N][sum] / 2 << endl;
    
    	return 0;
    }

  • 相关阅读:
    mysql function 与 procedure
    mysql存储过程详解
    mysql的过程和Oracle的区别
    ext combobox getValue
    tar + find
    精确到秒的JQuery日期控件
    SQL中not and or优先级问题
    sql生成一个唯一标示
    Guid.NewGuid().ToString()的几种格式 (转)
    win10怎样彻底关闭windows Defender
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/5122324.html
Copyright © 2011-2022 走看看