zoukankan      html  css  js  c++  java
  • HDU1323_Perfection【水题】

    Perfection


    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 1748    Accepted Submission(s): 1051

    Problem Description
    From the article Number Theory in the 1994 Microsoft Encarta: "If a, b, c are integers such that a = bc, a is called a multiple of b or of c, and b or c is called a divisor or factor of a. If c is not 1/-1, b is called a proper divisor of a. Even integers, which include 0, are multiples of 2, for example, -4, 0, 2, 10; an odd integer is an integer that is not even, for example, -5, 1, 3, 9. A perfect number is a positive integer that is equal to the sum of all its positive, proper divisors; for example, 6, which equals 1 + 2 + 3, and 28, which equals 1 + 2 + 4 + 7 + 14, are perfect numbers. A positive number that is not perfect is imperfect and is deficient or abundant according to whether the sum of its positive, proper divisors is smaller or larger than the number itself. Thus, 9, with proper divisors 1, 3, is deficient; 12, with proper divisors 1, 2, 3, 4, 6, is abundant." 
    Given a number, determine if it is perfect, abundant, or deficient. 
     
    Input
    A list of N positive integers (none greater than 60,000), with 1 < N < 100. A 0 will mark the end of the list.
     
    Output
    The first line of output should read PERFECTION OUTPUT. The next N lines of output should list for each input integer whether it is perfect, deficient, or abundant, as shown in the example below. Format counts: the echoed integers should be right justified within the first 5 spaces of the output line, followed by two blank spaces, followed by the description of the integer. The final line of output should read END OF OUTPUT.
     
    Sample Input
    15 28 6 56 60000 22 496 0
     
    Sample Output
    PERFECTION OUTPUT
       15  DEFICIENT
       28  PERFECT
        6  PERFECT
       56  ABUNDANT
    60000  ABUNDANT
       22  DEFICIENT
      496  PERFECT
    END OF OUTPUT
     
    Source

    Mid-Atlantic USA 1996


    题目大意:假设一个数的约数和大于它,就是ABUNDANT,假设等于它,就是

    PERFECT。若果小于它本身,就是DEFICIENT。

    思路:按题目要求和规定推断、输出。


    #include<stdio.h>
    
    int a[110],b[110];
    int main()
    {
        int i = 0,n;
        while(~scanf("%d",&n) && n)
        {
            a[i] = n;
            int sum = 0;
            for(int j = 1; j <= n/2; j++)
                if(n % j == 0)
                    sum += j;
            if(sum==n)
                b[i] = 1;
            else if(sum > n)
                b[i] = 2;
            else if(sum < n)
                b[i] = 0;
            i++;
        }
        printf("PERFECTION OUTPUT
    ");
        for(int j = 0; j < i; j++)
        {
            printf("%5d  ",a[j]);
            if(b[j]==2)
                printf("ABUNDANT
    ");
            else if(b[j]==1)
                printf("PERFECT
    ");
            else
                printf("DEFICIENT
    ");
        }
        printf("END OF OUTPUT
    ");
        return 0;
    }


  • 相关阅读:
    同余关系 等价关系 同余关系的原型
    同态 同构
    In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in
    数学用语中的 透明 transitive property
    Sethi model
    非奇异的;非退化的;满秩
    非齐次线性方程组 引出线性流形 陪集
    field, or, more generally, in a ring or even a semiring 数域、环、半环
    Linear transformations. 线性变换与矩阵的关系
    Isomorphism 同构
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/5284012.html
Copyright © 2011-2022 走看看