zoukankan      html  css  js  c++  java
  • python进行机器学习(五)之模型打分

    一、画出模型的残差值分布情况

    #!/usr/bin/python
    
    import pandas as pd
    import numpy as np
    import csv as csv
    import matplotlib
    import matplotlib.pyplot as plt
    from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV
    from sklearn.model_selection import cross_val_score
    
    
    
    train = pd.read_csv('train.csv', header=0)        # Load the train file into a dataframe
    df = pd.get_dummies(train.iloc[:,1:-1])
    df = df.fillna(df.mean())
    
    X_train = df
    y = train.price
    
    
    
    def rmse_cv(model):
        rmse= np.sqrt(-cross_val_score(model, X_train, y, scoring="neg_mean_squared_error", cv = 3))
        return(rmse)
    
    #调用LassoCV函数,并进行交叉验证,默认cv=3
    model_lasso = LassoCV(alphas = [0.1,1,0.001, 0.0005]).fit(X_train, y)
    
    
    
    matplotlib.rcParams['figure.figsize'] = (6.0, 6.0)
    
    #将模型预测的值与真实值作为两列放在DataFrame里面
    preds = pd.DataFrame({"preds":model_lasso.predict(X_train), "true":y})
    
    
    #真实值与预测值之间的差值作为一个新列
    preds["residuals"] = preds["true"] - preds["preds"]
    
    print(preds)
    
    #预测值作为X轴,残差值作为y轴,画出图形
    preds.plot(x = "preds", y = "residuals",kind = "scatter")
    plt.show()
    
        

    注:本样例只是为了说明问题,只用了几行数据来预测画图

    正常来讲,一个好的模型,残差值应该分布比较集中,而且基本都在0上下稍微浮动,表明残差值都比较小。

  • 相关阅读:
    DNS正向反向解析
    varnish-4.0.5的反向代理 缓存测试 负载均衡实验
    DS8700 硬盘更换略
    ftp虚拟用户
    maven mvn 命令行 编译打包
    linux下的springboot项目启动文件
    linux系统安装gcc
    linux系统下安装两个或多个tomcat
    linux系统的磁盘挂载
    常用linux命令
  • 原文地址:https://www.cnblogs.com/gczr/p/6836554.html
Copyright © 2011-2022 走看看