zoukankan      html  css  js  c++  java
  • 马氏距离通俗理解(转)

    来源:http://blog.csdn.net/lzhf1122/article/details/72935323

    作者:lzhf1122

    基础知识:

    假设空间中两点x,y,定义:

    欧几里得距离,

    Mahalanobis距离,

    不难发现,如果去掉马氏距离中的协方差矩阵,就退化为欧氏距离。那么我们就需要探究这个多出来的因子究竟有什么含义。

    例子:

    如果我们以厘米为单位来测量人的身高,以克(g)为单位测量人的体重。每个人被表示为一个两维向量,如一个人身高173cm,体重50000g,表示为(173,50000),根据身高体重的信息来判断体型的相似程度。

    我们已知小明(160,60000);小王(160,59000);小李(170,60000)。根据常识可以知道小明和小王体型相似。但是如果根据欧几里得距离来判断,小明和小王的距离要远远大于小明和小李之间的距离,即小明和小李体型相似。这是因为不同特征的度量标准之间存在差异而导致判断出错。

    以克(g)为单位测量人的体重,数据分布比较分散,即方差大,而以厘米为单位来测量人的身高,数据分布就相对集中,方差小。马氏距离的目的就是把方差归一化,使得特征之间的关系更加符合实际情况。

    图(a)展示了三个数据集的初始分布,看起来竖直方向上的那两个集合比较接近。在我们根据数据的协方差归一化空间之后,如图(b),实际上水平方向上的两个集合比较接近。

     

     

  • 相关阅读:
    架构资料
    Node参考资料
    运维参考资料
    前端参考资料
    Python参考资料
    推荐几个工具型网站
    学好Mac常用命令,助力iOS开发
    git submodule相关操作
    HttpURLConnection传JSON数据
    【树莓派笔记3】安装配置samba 和Windows进行文件共享
  • 原文地址:https://www.cnblogs.com/gczr/p/8466244.html
Copyright © 2011-2022 走看看