zoukankan      html  css  js  c++  java
  • 代码还原,IDA中使用的宏

    在IDA7.0中的定义文件拷贝的.

    如果想使用,直接去IDA的plugins插件目录下.包含它的 **defs.h""
    如下:

    /*

       This file contains definitions used by the Hex-Rays decompiler output.

       It has type definitions and convenience macros to make the

       output more readable.

       Copyright (c) 2007-2017 Hex-Rays

    */

    #ifndef HEXRAYS_DEFS_H

    #define HEXRAYS_DEFS_H

    #if defined(__GNUC__)

      typedef          long long ll;

      typedef unsigned long long ull;

      #define __int64 long long

      #define __int32 int

      #define __int16 short

      #define __int8  char

      #define MAKELL(num) num ## LL

      #define FMT_64 "ll"

    #elif defined(_MSC_VER)

      typedef          __int64 ll;

      typedef unsigned __int64 ull;

      #define MAKELL(num) num ## i64

      #define FMT_64 "I64"

    #elif defined (__BORLANDC__)

      typedef          __int64 ll;

      typedef unsigned __int64 ull;

      #define MAKELL(num) num ## i64

      #define FMT_64 "L"

    #else

      #error "unknown compiler"

    #endif

    typedef unsigned int uint;

    typedef unsigned char uchar;

    typedef unsigned short ushort;

    typedef unsigned long ulong;

    typedef          char   int8;

    typedef   signed char   sint8;

    typedef unsigned char   uint8;

    typedef          short  int16;

    typedef   signed short  sint16;

    typedef unsigned short  uint16;

    typedef          int    int32;

    typedef   signed int    sint32;

    typedef unsigned int    uint32;

    typedef ll              int64;

    typedef ll              sint64;

    typedef ull             uint64;

    // Partially defined types. They are used when the decompiler does not know

    // anything about the type except its size.

    #define _BYTE  uint8

    #define _WORD  uint16

    #define _DWORD uint32

    #define _QWORD uint64

    #if !defined(_MSC_VER)

    #define _LONGLONG __int128

    #endif

    // Non-standard boolean types. They are used when the decompiler can not use

    // the standard "bool" type because of the size mistmatch but the possible

    // values are only 0 and 1. See also 'BOOL' type below.

    typedef int8 _BOOL1;

    typedef int16 _BOOL2;

    typedef int32 _BOOL4;

    #ifndef _WINDOWS_

    typedef int8 BYTE;

    typedef int16 WORD;

    typedef int32 DWORD;

    typedef int32 LONG;

    typedef int BOOL;       // uppercase BOOL is usually 4 bytes

    #endif

    typedef int64 QWORD;

    #ifndef __cplusplus

    typedef int bool;       // we want to use bool in our C programs

    #endif

    #define __pure          // pure function: always returns the same value, has no

                            // side effects

    // Non-returning function

    #if defined(__GNUC__)

    #define __noreturn  __attribute__((noreturn))

    #else

    #define __noreturn  __declspec(noreturn)

    #endif

    #ifndef NULL

    #define NULL 0

    #endif

    // Some convenience macros to make partial accesses nicer

    #define LAST_IND(x,part_type)    (sizeof(x)/sizeof(part_type) - 1)

    #if defined(__BYTE_ORDER) && __BYTE_ORDER == __BIG_ENDIAN

    #  define LOW_IND(x,part_type)   LAST_IND(x,part_type)

    #  define HIGH_IND(x,part_type)  0

    #else

    #  define HIGH_IND(x,part_type)  LAST_IND(x,part_type)

    #  define LOW_IND(x,part_type)   0

    #endif

    // first unsigned macros:

    #define BYTEn(x, n)   (*((_BYTE*)&(x)+n))

    #define WORDn(x, n)   (*((_WORD*)&(x)+n))

    #define DWORDn(x, n)  (*((_DWORD*)&(x)+n))

    #define LOBYTE(x)  BYTEn(x,LOW_IND(x,_BYTE))

    #define LOWORD(x)  WORDn(x,LOW_IND(x,_WORD))

    #define LODWORD(x) DWORDn(x,LOW_IND(x,_DWORD))

    #define HIBYTE(x)  BYTEn(x,HIGH_IND(x,_BYTE))

    #define HIWORD(x)  WORDn(x,HIGH_IND(x,_WORD))

    #define HIDWORD(x) DWORDn(x,HIGH_IND(x,_DWORD))

    #define BYTE1(x)   BYTEn(x,  1)         // byte 1 (counting from 0)

    #define BYTE2(x)   BYTEn(x,  2)

    #define BYTE3(x)   BYTEn(x,  3)

    #define BYTE4(x)   BYTEn(x,  4)

    #define BYTE5(x)   BYTEn(x,  5)

    #define BYTE6(x)   BYTEn(x,  6)

    #define BYTE7(x)   BYTEn(x,  7)

    #define BYTE8(x)   BYTEn(x,  8)

    #define BYTE9(x)   BYTEn(x,  9)

    #define BYTE10(x)  BYTEn(x, 10)

    #define BYTE11(x)  BYTEn(x, 11)

    #define BYTE12(x)  BYTEn(x, 12)

    #define BYTE13(x)  BYTEn(x, 13)

    #define BYTE14(x)  BYTEn(x, 14)

    #define BYTE15(x)  BYTEn(x, 15)

    #define WORD1(x)   WORDn(x,  1)

    #define WORD2(x)   WORDn(x,  2)         // third word of the object, unsigned

    #define WORD3(x)   WORDn(x,  3)

    #define WORD4(x)   WORDn(x,  4)

    #define WORD5(x)   WORDn(x,  5)

    #define WORD6(x)   WORDn(x,  6)

    #define WORD7(x)   WORDn(x,  7)

    // now signed macros (the same but with sign extension)

    #define SBYTEn(x, n)   (*((int8*)&(x)+n))

    #define SWORDn(x, n)   (*((int16*)&(x)+n))

    #define SDWORDn(x, n)  (*((int32*)&(x)+n))

    #define SLOBYTE(x)  SBYTEn(x,LOW_IND(x,int8))

    #define SLOWORD(x)  SWORDn(x,LOW_IND(x,int16))

    #define SLODWORD(x) SDWORDn(x,LOW_IND(x,int32))

    #define SHIBYTE(x)  SBYTEn(x,HIGH_IND(x,int8))

    #define SHIWORD(x)  SWORDn(x,HIGH_IND(x,int16))

    #define SHIDWORD(x) SDWORDn(x,HIGH_IND(x,int32))

    #define SBYTE1(x)   SBYTEn(x,  1)

    #define SBYTE2(x)   SBYTEn(x,  2)

    #define SBYTE3(x)   SBYTEn(x,  3)

    #define SBYTE4(x)   SBYTEn(x,  4)

    #define SBYTE5(x)   SBYTEn(x,  5)

    #define SBYTE6(x)   SBYTEn(x,  6)

    #define SBYTE7(x)   SBYTEn(x,  7)

    #define SBYTE8(x)   SBYTEn(x,  8)

    #define SBYTE9(x)   SBYTEn(x,  9)

    #define SBYTE10(x)  SBYTEn(x, 10)

    #define SBYTE11(x)  SBYTEn(x, 11)

    #define SBYTE12(x)  SBYTEn(x, 12)

    #define SBYTE13(x)  SBYTEn(x, 13)

    #define SBYTE14(x)  SBYTEn(x, 14)

    #define SBYTE15(x)  SBYTEn(x, 15)

    #define SWORD1(x)   SWORDn(x,  1)

    #define SWORD2(x)   SWORDn(x,  2)

    #define SWORD3(x)   SWORDn(x,  3)

    #define SWORD4(x)   SWORDn(x,  4)

    #define SWORD5(x)   SWORDn(x,  5)

    #define SWORD6(x)   SWORDn(x,  6)

    #define SWORD7(x)   SWORDn(x,  7)

    // Helper functions to represent some assembly instructions.

    #ifdef __cplusplus

    // compile time assertion

    #define __CASSERT_N0__(l) COMPILE_TIME_ASSERT_ ## l

    #define __CASSERT_N1__(l) __CASSERT_N0__(l)

    #define CASSERT(cnd) typedef char __CASSERT_N1__(__LINE__) [(cnd) ? 1 : -1]

    // check that unsigned multiplication does not overflow

    template<class T> bool is_mul_ok(T count, T elsize)

    {

      CASSERT((T)(-1) > 0); // make sure T is unsigned

      if ( elsize  == 0 || count == 0 )

        return true;

      return count <= ((T)(-1)) / elsize;

    }

    // multiplication that saturates (yields the biggest value) instead of overflowing

    // such a construct is useful in "operator new[]"

    template<class T> bool saturated_mul(T count, T elsize)

    {

      return is_mul_ok(count, elsize) ? count * elsize : T(-1);

    }

    #include <stddef.h> // for size_t

    // memcpy() with determined behavoir: it always copies

    // from the start to the end of the buffer

    // note: it copies byte by byte, so it is not equivalent to, for example, rep movsd

    inline void *qmemcpy(void *dst, const void *src, size_t cnt)

    {

      char *out = (char *)dst;

      const char *in = (const char *)src;

      while ( cnt > 0 )

      {

        *out++ = *in++;

        --cnt;

      }

      return dst;

    }

    // Generate a reference to pair of operands

    template<class T>  int16 __PAIR__( int8  high, T low) { return ((( int16)high) << sizeof(high)*8) | uint8(low); }

    template<class T>  int32 __PAIR__( int16 high, T low) { return ((( int32)high) << sizeof(high)*8) | uint16(low); }

    template<class T>  int64 __PAIR__( int32 high, T low) { return ((( int64)high) << sizeof(high)*8) | uint32(low); }

    template<class T> uint16 __PAIR__(uint8  high, T low) { return (((uint16)high) << sizeof(high)*8) | uint8(low); }

    template<class T> uint32 __PAIR__(uint16 high, T low) { return (((uint32)high) << sizeof(high)*8) | uint16(low); }

    template<class T> uint64 __PAIR__(uint32 high, T low) { return (((uint64)high) << sizeof(high)*8) | uint32(low); }

    // rotate left

    template<class T> T __ROL__(T value, int count)

    {

      const uint nbits = sizeof(T) * 8;

      if ( count > 0 )

      {

        count %= nbits;

        T high = value >> (nbits - count);

        if ( T(-1) < 0 ) // signed value

          high &= ~((T(-1) << count));

        value <<= count;

        value |= high;

      }

      else

      {

        count = -count % nbits;

        T low = value << (nbits - count);

        value >>= count;

        value |= low;

      }

      return value;

    }

    inline uint8  __ROL1__(uint8  value, int count) { return __ROL__((uint8)value, count); }

    inline uint16 __ROL2__(uint16 value, int count) { return __ROL__((uint16)value, count); }

    inline uint32 __ROL4__(uint32 value, int count) { return __ROL__((uint32)value, count); }

    inline uint64 __ROL8__(uint64 value, int count) { return __ROL__((uint64)value, count); }

    inline uint8  __ROR1__(uint8  value, int count) { return __ROL__((uint8)value, -count); }

    inline uint16 __ROR2__(uint16 value, int count) { return __ROL__((uint16)value, -count); }

    inline uint32 __ROR4__(uint32 value, int count) { return __ROL__((uint32)value, -count); }

    inline uint64 __ROR8__(uint64 value, int count) { return __ROL__((uint64)value, -count); }

    // carry flag of left shift

    template<class T> int8 __MKCSHL__(T value, uint count)

    {

      const uint nbits = sizeof(T) * 8;

      count %= nbits;

      return (value >> (nbits-count)) & 1;

    }

    // carry flag of right shift

    template<class T> int8 __MKCSHR__(T value, uint count)

    {

      return (value >> (count-1)) & 1;

    }

    // sign flag

    template<class T> int8 __SETS__(T x)

    {

      if ( sizeof(T) == 1 )

        return int8(x) < 0;

      if ( sizeof(T) == 2 )

        return int16(x) < 0;

      if ( sizeof(T) == 4 )

        return int32(x) < 0;

      return int64(x) < 0;

    }

    // overflow flag of subtraction (x-y)

    template<class T, class U> int8 __OFSUB__(T x, U y)

    {

      if ( sizeof(T) < sizeof(U) )

      {

        U x2 = x;

        int8 sx = __SETS__(x2);

        return (sx ^ __SETS__(y)) & (sx ^ __SETS__(x2-y));

      }

      else

      {

        T y2 = y;

        int8 sx = __SETS__(x);

        return (sx ^ __SETS__(y2)) & (sx ^ __SETS__(x-y2));

      }

    }

    // overflow flag of addition (x+y)

    template<class T, class U> int8 __OFADD__(T x, U y)

    {

      if ( sizeof(T) < sizeof(U) )

      {

        U x2 = x;

        int8 sx = __SETS__(x2);

        return ((1 ^ sx) ^ __SETS__(y)) & (sx ^ __SETS__(x2+y));

      }

      else

      {

        T y2 = y;

        int8 sx = __SETS__(x);

        return ((1 ^ sx) ^ __SETS__(y2)) & (sx ^ __SETS__(x+y2));

      }

    }

    // carry flag of subtraction (x-y)

    template<class T, class U> int8 __CFSUB__(T x, U y)

    {

      int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);

      if ( size == 1 )

        return uint8(x) < uint8(y);

      if ( size == 2 )

        return uint16(x) < uint16(y);

      if ( size == 4 )

        return uint32(x) < uint32(y);

      return uint64(x) < uint64(y);

    }

    // carry flag of addition (x+y)

    template<class T, class U> int8 __CFADD__(T x, U y)

    {

      int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);

      if ( size == 1 )

        return uint8(x) > uint8(x+y);

      if ( size == 2 )

        return uint16(x) > uint16(x+y);

      if ( size == 4 )

        return uint32(x) > uint32(x+y);

      return uint64(x) > uint64(x+y);

    }

    #else

    // The following definition is not quite correct because it always returns

    // uint64. The above C++ functions are good, though.

    #define __PAIR__(high, low) (((uint64)(high)<<sizeof(high)*8) | low)

    // For C, we just provide macros, they are not quite correct.

    #define __ROL__(x, y) __rotl__(x, y)      // Rotate left

    #define __ROR__(x, y) __rotr__(x, y)      // Rotate right

    #define __CFSHL__(x, y) invalid_operation // Generate carry flag for (x<<y)

    #define __CFSHR__(x, y) invalid_operation // Generate carry flag for (x>>y)

    #define __CFADD__(x, y) invalid_operation // Generate carry flag for (x+y)

    #define __CFSUB__(x, y) invalid_operation // Generate carry flag for (x-y)

    #define __OFADD__(x, y) invalid_operation // Generate overflow flag for (x+y)

    #define __OFSUB__(x, y) invalid_operation // Generate overflow flag for (x-y)

    #endif

    // No definition for rcl/rcr because the carry flag is unknown

    #define __RCL__(x, y)    invalid_operation // Rotate left thru carry

    #define __RCR__(x, y)    invalid_operation // Rotate right thru carry

    #define __MKCRCL__(x, y) invalid_operation // Generate carry flag for a RCL

    #define __MKCRCR__(x, y) invalid_operation // Generate carry flag for a RCR

    #define __SETP__(x, y)   invalid_operation // Generate parity flag for (x-y)

    // In the decompilation listing there are some objects declarared as _UNKNOWN

    // because we could not determine their types. Since the C compiler does not

    // accept void item declarations, we replace them by anything of our choice,

    // for example a char:

    #define _UNKNOWN char

    #ifdef _MSC_VER

    #define snprintf _snprintf

    #define vsnprintf _vsnprintf

    #endif

    #endif // HEXRAYS_DEFS_H

  • 相关阅读:
    mac 打开文件路径
    js 小技巧
    java 随机数
    sql server 2000 按日期查找
    WML
    Groovy
    Windows Azure Traffic Manager (4) Windows Azure Traffic Manager (4) 循环法和故障转移
    Windows Azure Cloud Service (28) 在Windows Azure发送邮件(中)
    [New Portal] Windows Azure Cloud Service (30) 新的Windows Azure SDK 1.7和新的Windows Azure Managemeng Portal
    Windows Azure Traffic Manager (3) Windows Azure Traffic Manager (3) 创建流量管理器策略和性能负载平衡
  • 原文地址:https://www.cnblogs.com/gd-luojialin/p/11219947.html
Copyright © 2011-2022 走看看