zoukankan      html  css  js  c++  java
  • PCL中Sample_consensus分割支持的几何模型

    随机采样一致分割法,从点云中分割出线、面等几何元素

    #include <pcl/sample_consensus/method_types.h>
    #include <pcl/sample_consensus/model_types.h>
    #include <pcl/segmentation/sac_segmentation.h>
    
    // Create the segmentation object
    pcl::SACSegmentation<pcl::PointXYZ> seg;
    
    // Optional
    seg.setOptimizeCoefficients (true);
    
    // Mandatory
    seg.setModelType (pcl::SACMODEL_PLANE); //model: plane
    seg.setMethodType (pcl::SAC_RANSAC);

    (1) SACMODEL_PLANE(三维平面)

    • used to determine plane models. The four coefficients of the plane are itsHessian Normal form: [normal_x normal_y normal_z d] 
      • a : the X coordinate of the plane's normal (normalized)
      • b : the Y coordinate of the plane's normal (normalized)
      • c : the Z coordinate of the plane's normal (normalized)
      • d : the fourth Hessian component of the plane's equation
    (2) SACMODEL_LINE(三维直线)
    • used to determine line models. The six coefficients of the line are given by a point on the line and the direction of the line as: [point_on_line.x point_on_line.y point_on_line.z line_direction.x line_direction.y line_direction.z] 
      • point_on_line.x : the X coordinate of a point on the line
      • point_on_line.y : the Y coordinate of a point on the line
      • point_on_line.z : the Z coordinate of a point on the line
      • line_direction.x : the X coordinate of a line's direction
      • line_direction.y : the Y coordinate of a line's direction
      • line_direction.z : the Z coordinate of a line's direction
       
    (3) SACMODEL_CIRCLE2D(二维圆)
    • used to determine 2D circles in a plane. The circle's three coefficients are given by its center and radius as: [center.x center.y radius] 
      • center.x : the X coordinate of the circle's center
      • center.y : the Y coordinate of the circle's center
      • radius : the circle's radius
    (4) SACMODEL_CIRCLE3D
    • not implemented yet 
    (5) SACMODEL_SPHERE(球)
    • used to determine sphere models. The four coefficients of the sphere are given by its 3D center and radius as: [center.x center.y center.z radius]  
      • center.x : the X coordinate of the sphere's center
      • center.y : the Y coordinate of the sphere's center
      • center.z : the Z coordinate of the sphere's center
      • radius : the sphere's radius 
    (6) SACMODEL_CYLINDER(柱)
    •  used to determine cylinder models. The seven coefficients of the cylinder are given by a point on its axis, the axis direction, and a radius, as: [point_on_axis.x point_on_axis.y point_on_axis.z axis_direction.x axis_direction.y axis_direction.z radius] 
      • point_on_axis.x : the X coordinate of a point located on the cylinder axis
      • point_on_axis.y : the Y coordinate of a point located on the cylinder axis
      • point_on_axis.z : the Z coordinate of a point located on the cylinder axis
      • axis_direction.x : the X coordinate of the cylinder's axis direction
      • axis_direction.y : the Y coordinate of the cylinder's axis direction
      • axis_direction.z : the Z coordinate of the cylinder's axis direction
      • radius : the cylinder's radius 
    (7) SACMODEL_CONE 
    • not implemented yet 
    (8) SACMODEL_TORUS
    •  not implemented yet 
    (9) SACMODEL_PARALLEL_LINE(平行线)
    •  a model for determining a line parallel with a given axis, within a maximum specified angular deviation. The line coefficients are similar toSACMODEL_LINE

    The model coefficients are defined as:

      • point_on_line.x : the X coordinate of a point on the line
      • point_on_line.y : the Y coordinate of a point on the line
      • point_on_line.z : the Z coordinate of a point on the line
      • line_direction.x : the X coordinate of a line's direction
      • line_direction.y : the Y coordinate of a line's direction
      • line_direction.z : the Z coordinate of a line's direction 
    (10) SACMODEL_PERPENDICULAR_PLANE
    • a model for determining a plane perpendicular to an user-specified axis, within a maximum specified angular deviation. The plane coefficients are similar to SACMODEL_PLANE.
    • SampleConsensusModelPerpendicularPlane defines a model for 3D plane segmentation using additional angular constraints.The plane must be perpendicular to an user-specified axis (setAxis), up to an user-specified angle threshold (setEpsAngle).

    The model coefficients are defined as:

      • a : the X coordinate of the plane's normal (normalized)
      • b : the Y coordinate of the plane's normal (normalized)
      • c : the Z coordinate of the plane's normal (normalized)
      • d : the fourth Hessian component of the plane's equation

    Code example for a plane model, perpendicular (within a 15 degrees tolerance) with the Z axis:

     SampleConsensusModelPerpendicularPlane<pcl::PointXYZ> model (cloud);
     model.setAxis (Eigen::Vector3f (0.0, 0.0, 1.0));
     model.setEpsAngle (pcl::deg2rad (15));
    Note:
    Please remember that you need to specify an angle > 0 in order to activate the axis-angle constraint!
     

    (11) SACMODEL_PARALLEL_LINES

    • not implemented yet 

    (12) SACMODEL_NORMAL_PLANE 

    • a model for determining plane models using an additional constraint: the surface normals at each inlier point has to be parallel to the surface normal of the output plane, within a maximum specified angular deviation. The plane coefficients are similar to SACMODEL_PLANE
    • SampleConsensusModelNormalPlane defines a model for 3D plane segmentation using additional surface normal constraints. 
    • Basically this means that checking for inliers will not only involve a "distance to model" criterion, but also an additional "maximum angular deviation" between the plane's normal and the inlier points normals.

    The model coefficients are defined as:

      • a : the X coordinate of the plane's normal (normalized)
      • b : the Y coordinate of the plane's normal (normalized)
      • c : the Z coordinate of the plane's normal (normalized)
      • d : the fourth Hessian component of the plane's equation 

    To set the influence of the surface normals in the inlier estimation process, set the normal weight (0.0-1.0), e.g.:

     SampleConsensusModelNormalPlane<pcl::PointXYZ, pcl::Normal> sac_model;
     ...
     sac_model.setNormalDistanceWeight (0.1);
     ...

    (13) SACMODEL_PARALLEL_PLANE

    • a model for determining a plane parallel to an user-specified axis, within a maximim specified angular deviation. SACMODEL_PLANE. 

    Code example for a plane model, parallel (within a 15 degrees tolerance) with the Z axis:

     SampleConsensusModelParallelPlane<pcl::PointXYZ> model (cloud);
     model.setAxis (Eigen::Vector3f (0.0, 0.0, 1.0));
     model.setEpsAngle (pcl::deg2rad (15));

    (14) SACMODEL_NORMAL_PARALLEL_PLANE

    • defines a model for 3D plane segmentation using additional surface normal constraints. The plane must lieparallel to a user-specified axis. SACMODEL_NORMAL_PARALLEL_PLANE therefore is equivallent to SACMODEL_NORMAL_PLANE + SACMODEL_PARALLEL_PLANE. The plane coefficients are similar toSACMODEL_PLANE
    • SampleConsensusModelNormalParallelPlane defines a model for 3D plane segmentation using additional surface normal constraints. 
    • Basically this means that checking for inliers will not only involve a "distance to model" criterion, but also an additional "maximum angular deviation" between the plane's normal and the inlier points normals. In addition, the plane normal must lie parallel to an user-specified axis.

    The model coefficients are defined as:

      • a : the X coordinate of the plane's normal (normalized)
      • b : the Y coordinate of the plane's normal (normalized)
      • c : the Z coordinate of the plane's normal (normalized)
      • d : the fourth Hessian component of the plane's equation

    To set the influence of the surface normals in the inlier estimation process, set the normal weight (0.0-1.0), e.g.:

     SampleConsensusModelNormalPlane<pcl::PointXYZ, pcl::Normal> sac_model;
     ...
     sac_model.setNormalDistanceWeight (0.1);
     ...

    文章引用自 https://blog.csdn.net/sdau20104555/article/details/40649101

  • 相关阅读:
    数据结构的理解
    等价、偏序和全序
    等价、偏序和全序
    二叉树与树的理解
    SICP 习题 (2.10)解题总结: 区间除法中除于零的问题
    div:给div加滚动栏 div的滚动栏设置
    textarea文本域宽度和高度(width、height)自己主动适应变化处理
    OSX: 逻辑卷管理系统Core Storage(1)
    垂死挣扎还是涅槃重生 -- Delphi XE5 公布会归来感想
    string实现
  • 原文地址:https://www.cnblogs.com/gdut-gordon/p/8977942.html
Copyright © 2011-2022 走看看