zoukankan      html  css  js  c++  java
  • 6581 Number Triangle

    6581 Number Triangle

    时间限制:500MS  内存限制:1000K
    提交次数:57 通过次数:47

    题型: 编程题   语言: G++;GCC

     

    Description

            7
          3   8
        8   1   0
      2   7   4   4
    4   5   2   6   5
       (Figure 1)
    

    Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right. 


    输入格式

    Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. 
    The following N lines describe the data of the triangle. The number of rows in the triangle is &gt; 1 but <= 100. 
    The numbers in the triangle, all integers, are between 0 and 99. 



    输出格式

    Your program is to write to standard output. The highest sum is written as an integer.



     

    输入样例

    5
    7
    3 8
    8 1 0 
    2 7 4 4
    4 5 2 6 5
    



     

    输出样例

    30



     

    作者

     admin

      最原始的数塔问题,,经典的动态规划问题。状态转移方程:dp[i][j]=max(dp[i-1][j-1],dp[i-1][j])+a[i][j];

    其他细节见代码注释:

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<cmath>
     6 #include<cctype>
     7 #include<algorithm>
     8 #include<set>
     9 #include<map>
    10 #include<vector>
    11 #include<queue>
    12 #include<stack>
    13 #include<utility>
    14 #define ll long long
    15 #define inf 0x3f3f3f3f
    16 using namespace std;
    17 
    18 int a[105][105];//a[i][i]为数塔上点[i][i]处输入的值
    19 int dp[105][105];//dp[i][j]为走到点[i][j]所能得的最大值
    20 int main()
    21 {
    22     //freopen("input.txt","r",stdin);
    23     memset(a,0,sizeof(a));  //初始化数组
    24     memset(dp,0,sizeof(dp));
    25     int n;
    26     scanf("%d",&n);  //输入数据
    27     for(int i=1;i<=n;i++) 
    28     {
    29         for(int j=1;j<=i;j++)
    30         {
    31             scanf("%d",&a[i][j]);
    32         }
    33     }
    34     //
    35     dp[1][1]=a[1][1];
    36     if(n==1) //n为1就直接输入塔顶数字
    37     {
    38         printf("%d
    ",dp[1][1]);
    39         return 0;
    40     }
    41     //状态转移方程
    42     for(int i=2;i<=n;i++)
    43     {
    44         for(int j=1;j<=i;j++)
    45         { 
    46           //走到第a[i][j]位置能得到的最大值dp[i][j]就是等于选择从走到a[i-1][j-1]和走到
    47           //a[i-1][j]中值较大的那种走法里再加上a[i][j];
    48             dp[i][j]=max(dp[i-1][j-1],dp[i-1][j])+a[i][j];
    49         }
    50     }
    51     //
    52     int Max=-1;
    53     for(int i=1;i<=n;i++)//扫描塔的最下层,找出最大值
    54         if(dp[n][i]>Max)
    55             Max=dp[n][i];
    56     printf("%d
    ",Max);
    57     return 0;
    58 }
  • 相关阅读:
    Go安装
    Redis 安装与使用
    scala总结
    C++学习笔记4
    LeetCode 22.将数组分成和相等的三个部分
    LeetCode 21.二叉树的直径 DFS深度遍历
    LeetCode 20.买卖股票的最佳时机 暴力破解法与动态规划
    LeetCode 19.凑零钱问题 动态规划
    LeetCode 18.队列的最大值
    Java SSM Spring MVC 三层架构和MVC+SpringMVC的入门案例+请求参数的绑定+常用的注解
  • 原文地址:https://www.cnblogs.com/geek1116/p/5530417.html
Copyright © 2011-2022 走看看