zoukankan      html  css  js  c++  java
  • 6581 Number Triangle

    6581 Number Triangle

    时间限制:500MS  内存限制:1000K
    提交次数:57 通过次数:47

    题型: 编程题   语言: G++;GCC

     

    Description

            7
          3   8
        8   1   0
      2   7   4   4
    4   5   2   6   5
       (Figure 1)
    

    Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right. 


    输入格式

    Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. 
    The following N lines describe the data of the triangle. The number of rows in the triangle is &gt; 1 but <= 100. 
    The numbers in the triangle, all integers, are between 0 and 99. 



    输出格式

    Your program is to write to standard output. The highest sum is written as an integer.



     

    输入样例

    5
    7
    3 8
    8 1 0 
    2 7 4 4
    4 5 2 6 5
    



     

    输出样例

    30



     

    作者

     admin

      最原始的数塔问题,,经典的动态规划问题。状态转移方程:dp[i][j]=max(dp[i-1][j-1],dp[i-1][j])+a[i][j];

    其他细节见代码注释:

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<cmath>
     6 #include<cctype>
     7 #include<algorithm>
     8 #include<set>
     9 #include<map>
    10 #include<vector>
    11 #include<queue>
    12 #include<stack>
    13 #include<utility>
    14 #define ll long long
    15 #define inf 0x3f3f3f3f
    16 using namespace std;
    17 
    18 int a[105][105];//a[i][i]为数塔上点[i][i]处输入的值
    19 int dp[105][105];//dp[i][j]为走到点[i][j]所能得的最大值
    20 int main()
    21 {
    22     //freopen("input.txt","r",stdin);
    23     memset(a,0,sizeof(a));  //初始化数组
    24     memset(dp,0,sizeof(dp));
    25     int n;
    26     scanf("%d",&n);  //输入数据
    27     for(int i=1;i<=n;i++) 
    28     {
    29         for(int j=1;j<=i;j++)
    30         {
    31             scanf("%d",&a[i][j]);
    32         }
    33     }
    34     //
    35     dp[1][1]=a[1][1];
    36     if(n==1) //n为1就直接输入塔顶数字
    37     {
    38         printf("%d
    ",dp[1][1]);
    39         return 0;
    40     }
    41     //状态转移方程
    42     for(int i=2;i<=n;i++)
    43     {
    44         for(int j=1;j<=i;j++)
    45         { 
    46           //走到第a[i][j]位置能得到的最大值dp[i][j]就是等于选择从走到a[i-1][j-1]和走到
    47           //a[i-1][j]中值较大的那种走法里再加上a[i][j];
    48             dp[i][j]=max(dp[i-1][j-1],dp[i-1][j])+a[i][j];
    49         }
    50     }
    51     //
    52     int Max=-1;
    53     for(int i=1;i<=n;i++)//扫描塔的最下层,找出最大值
    54         if(dp[n][i]>Max)
    55             Max=dp[n][i];
    56     printf("%d
    ",Max);
    57     return 0;
    58 }
  • 相关阅读:
    线性筛法(欧拉筛法)求素数
    07 day 2
    07 DAY 1
    二模 06day2
    刷水题记(2)
    The Perfect Stall (incomplete)
    离散化的应用:矩形覆盖问题
    刷水题记(1)
    发个题目坑 二模03day1
    hdu 5996 dingyeye loves stone(博弈)
  • 原文地址:https://www.cnblogs.com/geek1116/p/5530417.html
Copyright © 2011-2022 走看看