zoukankan      html  css  js  c++  java
  • Planar data classification with onehidden layer

    所需资料:下载地址

    Updates to Assignment

    If you were working on the older version:

    • Please click on the "Coursera" icon in the top right to open up the folder directory.
    • Navigate to the folder: Week 3/ Planar data classification with one hidden layer. You can see your prior work in version 6b: "Planar data classification with one hidden layer v6b.ipynb"

    List of bug fixes and enhancements

    • Clarifies that the classifier will learn to classify regions as either red or blue.
    • compute_cost function fixes np.squeeze by casting it as a float.
    • compute_cost instructions clarify the purpose of np.squeeze.
    • compute_cost clarifies that "parameters" parameter is not needed, but is kept in the function definition until the auto-grader is also updated.
    • nn_model removes extraction of parameter values, as the entire parameter dictionary is passed to the invoked functions.

    Planar data classification with one hidden layer

    Welcome to your week 3 programming assignment. It's time to build your first neural network, which will have a hidden layer. You will see a big difference between this model and the one you implemented using logistic regression.

    You will learn how to:

    • Implement a 2-class classification neural network with a single hidden layer
    • Use units with a non-linear activation function, such as tanh
    • Compute the cross entropy loss
    • Implement forward and backward propagation

    1 - Packages

    Let's first import all the packages that you will need during this assignment.

    • numpy is the fundamental package for scientific computing with Python.
    • sklearn provides simple and efficient tools for data mining and data analysis.
    • matplotlib is a library for plotting graphs in Python.
    • testCases provides some test examples to assess the correctness of your functions
    • planar_utils provide various useful functions used in this assignment
    # Package imports
    import numpy as np
    import matplotlib.pyplot as plt
    from testCases_v2 import *
    import sklearn
    import sklearn.datasets
    import sklearn.linear_model
    from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
    
    %matplotlib inline
    
    np.random.seed(1) # set a seed so that the results are consistent
    

    2 - Dataset

    First, let's get the dataset you will work on. The following code will load a "flower" 2-class dataset into variables X and Y.

    X, Y = load_planar_dataset()
    

    Visualize the dataset using matplotlib. The data looks like a "flower" with some red (label y=0) and some blue (y=1) points. Your goal is to build a model to fit this data. In other words, we want the classifier to define regions as either red or blue.

    # Visualize the data:
    plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);
    

    output_7_0

    You have:
    - a numpy-array (matrix) X that contains your features (x1, x2)
    - a numpy-array (vector) Y that contains your labels (red:0, blue:1).

    Lets first get a better sense of what our data is like.

    Exercise: How many training examples do you have? In addition, what is the shape of the variables X and Y?

    Hint: How do you get the shape of a numpy array? (help)

    ### START CODE HERE ### (≈ 3 lines of code)
    shape_X = X.shape
    shape_Y = Y.shape
    m = X.shape[1]  # training set size
    ### END CODE HERE ###
    
    print ('The shape of X is: ' + str(shape_X))
    print ('The shape of Y is: ' + str(shape_Y))
    print ('I have m = %d training examples!' % (m))
    
    The shape of X is: (2, 400)
    The shape of Y is: (1, 400)
    I have m = 400 training examples!
    

    3 - Simple Logistic Regression

    Before building a full neural network, lets first see how logistic regression performs on this problem. You can use sklearn's built-in functions to do that. Run the code below to train a logistic regression classifier on the dataset.

    # Train the logistic regression classifier
    clf = sklearn.linear_model.LogisticRegressionCV();
    clf.fit(X.T, Y.T);
    

    You can now plot the decision boundary of these models. Run the code below.

    # Plot the decision boundary for logistic regression
    plot_decision_boundary(lambda x: clf.predict(x), X, Y)
    plt.title("Logistic Regression")
    
    # Print accuracy
    LR_predictions = clf.predict(X.T)
    print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
           '% ' + "(percentage of correctly labelled datapoints)")
    
    Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)
    

    output_13_1

    Interpretation: The dataset is not linearly separable, so logistic regression doesn't perform well. Hopefully a neural network will do better. Let's try this now!

    4 - Neural Network model

    Logistic regression did not work well on the "flower dataset". You are going to train a Neural Network with a single hidden layer.

    Here is our model:

    图片

    Mathematically:

    For one example (x^{(i)}):

    [z^{[1] (i)} = W^{[1]} x^{(i)} + b^{[1]} ag{1} ]

    [a^{[1] (i)} = anh(z^{[1] (i)}) ag{2} ]

    [z^{[2] (i)} = W^{[2]} a^{[1] (i)} + b^{[2]} ag{3} ]

    [hat{y}^{(i)} = a^{[2] (i)} = sigma(z^{ [2] (i)}) ag{4} ]

    [y^{(i)}_{prediction} = egin{cases} 1 & mbox{if } a^{[2](i)} > 0.5 \ 0 & mbox{otherwise } end{cases} ag{5} ]

    Given the predictions on all the examples, you can also compute the cost (J) as follows:

    [J = - frac{1}{m} sumlimits_{i = 0}^{m} largeleft(small y^{(i)}logleft(a^{[2] (i)} ight) + (1-y^{(i)})logleft(1- a^{[2] (i)} ight) large ight) small ag{6} ]

    Reminder: The general methodology to build a Neural Network is to:
    1. Define the neural network structure ( # of input units, # of hidden units, etc).
    2. Initialize the model's parameters
    3. Loop:
    - Implement forward propagation
    - Compute loss
    - Implement backward propagation to get the gradients
    - Update parameters (gradient descent)

    You often build helper functions to compute steps 1-3 and then merge them into one function we call nn_model(). Once you've built nn_model() and learnt the right parameters, you can make predictions on new data.

    4.1 - Defining the neural network structure

    Exercise: Define three variables:
    - n_x: the size of the input layer
    - n_h: the size of the hidden layer (set this to 4)
    - n_y: the size of the output layer

    Hint: Use shapes of X and Y to find n_x and n_y. Also, hard code the hidden layer size to be 4.

    # GRADED FUNCTION: layer_sizes
    
    def layer_sizes(X, Y):
        """
        Arguments:
        X -- input dataset of shape (input size, number of examples)
        Y -- labels of shape (output size, number of examples)
        
        Returns:
        n_x -- the size of the input layer
        n_h -- the size of the hidden layer
        n_y -- the size of the output layer
        """
        ### START CODE HERE ### (≈ 3 lines of code)
        n_x = X.shape[0] # size of input layer
        n_h = 4
        n_y = Y.shape[0] # size of output layer
        ### END CODE HERE ###
        return (n_x, n_h, n_y)
    
    X_assess, Y_assess = layer_sizes_test_case()
    (n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess)
    print("The size of the input layer is: n_x = " + str(n_x))
    print("The size of the hidden layer is: n_h = " + str(n_h))
    print("The size of the output layer is: n_y = " + str(n_y))
    
    The size of the input layer is: n_x = 5
    The size of the hidden layer is: n_h = 4
    The size of the output layer is: n_y = 2
    

    4.2 - Initialize the model's parameters

    Exercise: Implement the function initialize_parameters().

    Instructions:

    • Make sure your parameters' sizes are right. Refer to the neural network figure above if needed.
    • You will initialize the weights matrices with random values.
      • Use: np.random.randn(a,b) * 0.01 to randomly initialize a matrix of shape (a,b).
    • You will initialize the bias vectors as zeros.
      • Use: np.zeros((a,b)) to initialize a matrix of shape (a,b) with zeros.
    # GRADED FUNCTION: initialize_parameters
    
    def initialize_parameters(n_x, n_h, n_y):
        """
        Argument:
        n_x -- size of the input layer
        n_h -- size of the hidden layer
        n_y -- size of the output layer
        
        Returns:
        params -- python dictionary containing your parameters:
                        W1 -- weight matrix of shape (n_h, n_x)
                        b1 -- bias vector of shape (n_h, 1)
                        W2 -- weight matrix of shape (n_y, n_h)
                        b2 -- bias vector of shape (n_y, 1)
        """
        
        np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.
        
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = np.random.randn(n_h, n_x) * 0.01
        b1 = np.zeros((n_h, 1))
        W2 = np.random.randn(n_y, n_h) * 0.01
        b2 = np.zeros((n_y, 1))
        ### END CODE HERE ###
        
        assert (W1.shape == (n_h, n_x))
        assert (b1.shape == (n_h, 1))
        assert (W2.shape == (n_y, n_h))
        assert (b2.shape == (n_y, 1))
        
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        
        return parameters
    
    n_x, n_h, n_y = initialize_parameters_test_case()
    
    parameters = initialize_parameters(n_x, n_h, n_y)
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))
    
    W1 = [[-0.00416758 -0.00056267]
     [-0.02136196  0.01640271]
     [-0.01793436 -0.00841747]
     [ 0.00502881 -0.01245288]]
    b1 = [[ 0.]
     [ 0.]
     [ 0.]
     [ 0.]]
    W2 = [[-0.01057952 -0.00909008  0.00551454  0.02292208]]
    b2 = [[ 0.]]
    

    4.3 - The Loop

    Question: Implement forward_propagation().

    Instructions:

    • Look above at the mathematical representation of your classifier.
    • You can use the function sigmoid(). It is built-in (imported) in the notebook.
    • You can use the function np.tanh(). It is part of the numpy library.
    • The steps you have to implement are:
      1. Retrieve each parameter from the dictionary "parameters" (which is the output of initialize_parameters()) by using parameters[".."].
      2. Implement Forward Propagation. Compute (Z^{[1]}, A^{[1]}, Z^{[2]}) and (A^{[2]}) (the vector of all your predictions on all the examples in the training set).
    • Values needed in the backpropagation are stored in "cache". The cache will be given as an input to the backpropagation function.
    # GRADED FUNCTION: forward_propagation
    
    def forward_propagation(X, parameters):
        """
        Argument:
        X -- input data of size (n_x, m)
        parameters -- python dictionary containing your parameters (output of initialization function)
        
        Returns:
        A2 -- The sigmoid output of the second activation
        cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
        """
        # Retrieve each parameter from the dictionary "parameters"
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        ### END CODE HERE ###
        
        # Implement Forward Propagation to calculate A2 (probabilities)
        ### START CODE HERE ### (≈ 4 lines of code)
        Z1 = np.matmul(W1, X) + b1
        A1 = np.tanh(Z1)
        Z2 = np.matmul(W2, A1) + b2
        A2 = sigmoid(Z2)
        ### END CODE HERE ###
        
        assert(A2.shape == (1, X.shape[1]))
        
        cache = {"Z1": Z1,
                 "A1": A1,
                 "Z2": Z2,
                 "A2": A2}
        
        return A2, cache
    
    X_assess, parameters = forward_propagation_test_case()
    A2, cache = forward_propagation(X_assess, parameters)
    
    # Note: we use the mean here just to make sure that your output matches ours. 
    print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2']))
    
    0.262818640198 0.091999045227 -1.30766601287 0.212877681719
    

    Now that you have computed (A^{[2]}) (in the Python variable "A2"), which contains (a^{[2](i)}) for every example, you can compute the cost function as follows:

    [J = - frac{1}{m} sumlimits_{i = 1}^{m} large{(} small y^{(i)}logleft(a^{[2] (i)} ight) + (1-y^{(i)})logleft(1- a^{[2] (i)} ight) large{)} small ag{13} ]

    Exercise: Implement compute_cost() to compute the value of the cost (J).

    Instructions:

    • There are many ways to implement the cross-entropy loss. To help you, we give you how we would have implemented
      (- sumlimits_{i=0}^{m} y^{(i)}log(a^{[2](i)})):
    logprobs = np.multiply(np.log(A2),Y)
    cost = - np.sum(logprobs)                # no need to use a for loop!
    

    (you can use either np.multiply() and then np.sum() or directly np.dot()).
    Note that if you use np.multiply followed by np.sum the end result will be a type float, whereas if you use np.dot, the result will be a 2D numpy array. We can use np.squeeze() to remove redundant dimensions (in the case of single float, this will be reduced to a zero-dimension array). We can cast the array as a type float using float().

    # GRADED FUNCTION: compute_cost
    
    def compute_cost(A2, Y, parameters):
        """
        Computes the cross-entropy cost given in equation (13)
        
        Arguments:
        A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
        Y -- "true" labels vector of shape (1, number of examples)
        parameters -- python dictionary containing your parameters W1, b1, W2 and b2
        [Note that the parameters argument is not used in this function, 
        but the auto-grader currently expects this parameter.
        Future version of this notebook will fix both the notebook 
        and the auto-grader so that `parameters` is not needed.
        For now, please include `parameters` in the function signature,
        and also when invoking this function.]
        
        Returns:
        cost -- cross-entropy cost given equation (13)
        
        """
        
        m = Y.shape[1] # number of example
    
        # Compute the cross-entropy cost
        ### START CODE HERE ### (≈ 2 lines of code)
        logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), 1 - Y)
        cost = (-1 / m) * np.sum(logprobs)
        ### END CODE HERE ###
        
        cost = float(np.squeeze(cost))  # makes sure cost is the dimension we expect. 
                                        # E.g., turns [[17]] into 17 
        assert(isinstance(cost, float))
        
        return cost
    
    A2, Y_assess, parameters = compute_cost_test_case()
    
    print("cost = " + str(compute_cost(A2, Y_assess, parameters)))
    
    cost = 0.6930587610394646
    

    Using the cache computed during forward propagation, you can now implement backward propagation.

    Question: Implement the function backward_propagation().

    Instructions:
    Backpropagation is usually the hardest (most mathematical) part in deep learning. To help you, here again is the slide from the lecture on backpropagation. You'll want to use the six equations on the right of this slide, since you are building a vectorized implementation.

    图片

    • Tips:
      • To compute dZ1 you'll need to compute (g^{[1]'}(Z^{[1]})). Since (g^{[1]}(.)) is the tanh activation function, if (a = g^{[1]}(z)) then (g^{[1]'}(z) = 1-a^2). So you can compute
        (g^{[1]'}(Z^{[1]})) using (1 - np.power(A1, 2)).
    # GRADED FUNCTION: backward_propagation
    
    def backward_propagation(parameters, cache, X, Y):
        """
        Implement the backward propagation using the instructions above.
        
        Arguments:
        parameters -- python dictionary containing our parameters 
        cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
        X -- input data of shape (2, number of examples)
        Y -- "true" labels vector of shape (1, number of examples)
        
        Returns:
        grads -- python dictionary containing your gradients with respect to different parameters
        """
        m = X.shape[1]
        
        # First, retrieve W1 and W2 from the dictionary "parameters".
        ### START CODE HERE ### (≈ 2 lines of code)
        W1 = parameters["W1"]
        W2 = parameters["W2"]
        ### END CODE HERE ###
            
        # Retrieve also A1 and A2 from dictionary "cache".
        ### START CODE HERE ### (≈ 2 lines of code)
        A1 = cache["A1"]
        A2 = cache["A2"]
        ### END CODE HERE ###
        
        # Backward propagation: calculate dW1, db1, dW2, db2. 
        ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
        dZ2 = A2 - Y
        dW2 = (1 / m) * np.matmul(dZ2, A1.T)
        db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
        dZ1 = np.multiply(np.matmul(W2.T, dZ2), 1 - np.power(A1, 2))
        dW1 = (1 / m) * np.matmul(dZ1, X.T)
        db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
        ### END CODE HERE ###
        
        grads = {"dW1": dW1,
                 "db1": db1,
                 "dW2": dW2,
                 "db2": db2}
        
        return grads
    
    parameters, cache, X_assess, Y_assess = backward_propagation_test_case()
    
    grads = backward_propagation(parameters, cache, X_assess, Y_assess)
    print ("dW1 = "+ str(grads["dW1"]))
    print ("db1 = "+ str(grads["db1"]))
    print ("dW2 = "+ str(grads["dW2"]))
    print ("db2 = "+ str(grads["db2"]))
    
    dW1 = [[ 0.00301023 -0.00747267]
     [ 0.00257968 -0.00641288]
     [-0.00156892  0.003893  ]
     [-0.00652037  0.01618243]]
    db1 = [[ 0.00176201]
     [ 0.00150995]
     [-0.00091736]
     [-0.00381422]]
    dW2 = [[ 0.00078841  0.01765429 -0.00084166 -0.01022527]]
    db2 = [[-0.16655712]]
    

    Question: Implement the update rule. Use gradient descent. You have to use (dW1, db1, dW2, db2) in order to update (W1, b1, W2, b2).

    General gradient descent rule: $ heta = heta - alpha frac{partial J }{ partial heta }$ where (alpha) is the learning rate and ( heta) represents a parameter.

    Illustration: The gradient descent algorithm with a good learning rate (converging) and a bad learning rate (diverging). Images courtesy of Adam Harley.

    sgd

    sgd_bad

    # GRADED FUNCTION: update_parameters
    
    def update_parameters(parameters, grads, learning_rate = 1.2):
        """
        Updates parameters using the gradient descent update rule given above
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        grads -- python dictionary containing your gradients 
        
        Returns:
        parameters -- python dictionary containing your updated parameters 
        """
        # Retrieve each parameter from the dictionary "parameters"
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        ### END CODE HERE ###
        
        # Retrieve each gradient from the dictionary "grads"
        ### START CODE HERE ### (≈ 4 lines of code)
        dW1 = grads["dW1"]
        db1 = grads["db1"]
        dW2 = grads["dW2"]
        db2 = grads["db2"]
        ## END CODE HERE ###
        
        # Update rule for each parameter
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = W1 - learning_rate * dW1
        b1 = b1 - learning_rate * db1
        W2 = W2 - learning_rate * dW2
        b2 = b2 - learning_rate * db2
        ### END CODE HERE ###
        
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        
        return parameters
    
    parameters, grads = update_parameters_test_case()
    parameters = update_parameters(parameters, grads)
    
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))
    
    W1 = [[-0.00643025  0.01936718]
     [-0.02410458  0.03978052]
     [-0.01653973 -0.02096177]
     [ 0.01046864 -0.05990141]]
    b1 = [[ -1.02420756e-06]
     [  1.27373948e-05]
     [  8.32996807e-07]
     [ -3.20136836e-06]]
    W2 = [[-0.01041081 -0.04463285  0.01758031  0.04747113]]
    b2 = [[ 0.00010457]]
    

    4.4 - Integrate parts 4.1, 4.2 and 4.3 in nn_model()

    Question: Build your neural network model in nn_model().

    Instructions: The neural network model has to use the previous functions in the right order.

    # GRADED FUNCTION: nn_model
    
    def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
        """
        Arguments:
        X -- dataset of shape (2, number of examples)
        Y -- labels of shape (1, number of examples)
        n_h -- size of the hidden layer
        num_iterations -- Number of iterations in gradient descent loop
        print_cost -- if True, print the cost every 1000 iterations
        
        Returns:
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
        
        np.random.seed(3)
        n_x = layer_sizes(X, Y)[0]
        n_y = layer_sizes(X, Y)[2]
        
        # Initialize parameters
        ### START CODE HERE ### (≈ 1 line of code)
        parameters = initialize_parameters(n_x, n_h, n_y)
        ### END CODE HERE ###
        
        # Loop (gradient descent)
    
        for i in range(0, num_iterations):
             
            ### START CODE HERE ### (≈ 4 lines of code)
            # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
            A2, cache = forward_propagation(X, parameters)
            
            # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
            cost = compute_cost(A2, Y, parameters)
     
            # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
            grads = backward_propagation(parameters, cache, X, Y)
     
            # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
            parameters = update_parameters(parameters, grads)
            
            ### END CODE HERE ###
            
            # Print the cost every 1000 iterations
            if print_cost and i % 1000 == 0:
                print ("Cost after iteration %i: %f" %(i, cost))
    
        return parameters
    
    X_assess, Y_assess = nn_model_test_case()
    parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=True)
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))
    
    Cost after iteration 0: 0.692739
    Cost after iteration 1000: 0.000218
    Cost after iteration 2000: 0.000107
    Cost after iteration 3000: 0.000071
    Cost after iteration 4000: 0.000053
    Cost after iteration 5000: 0.000042
    Cost after iteration 6000: 0.000035
    Cost after iteration 7000: 0.000030
    Cost after iteration 8000: 0.000026
    Cost after iteration 9000: 0.000023
    W1 = [[-0.65848169  1.21866811]
     [-0.76204273  1.39377573]
     [ 0.5792005  -1.10397703]
     [ 0.76773391 -1.41477129]]
    b1 = [[ 0.287592  ]
     [ 0.3511264 ]
     [-0.2431246 ]
     [-0.35772805]]
    W2 = [[-2.45566237 -3.27042274  2.00784958  3.36773273]]
    b2 = [[ 0.20459656]]
    

    4.5 Predictions

    Question: Use your model to predict by building predict().
    Use forward propagation to predict results.

    Reminder: predictions = (y_{prediction} = mathbb 1 ext{{activation > 0.5}} = egin{cases} 1 & ext{if} activation > 0.5 \ 0 & ext{otherwise} end{cases})

    As an example, if you would like to set the entries of a matrix X to 0 and 1 based on a threshold you would do: X_new = (X > threshold)

    # GRADED FUNCTION: predict
    
    def predict(parameters, X):
        """
        Using the learned parameters, predicts a class for each example in X
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        X -- input data of size (n_x, m)
        
        Returns
        predictions -- vector of predictions of our model (red: 0 / blue: 1)
        """
        
        # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
        ### START CODE HERE ### (≈ 2 lines of code)
        A2, cache = forward_propagation(X, parameters)
        predictions = A2 > 0.5
        ### END CODE HERE ###
        
        return predictions
    
    parameters, X_assess = predict_test_case()
    
    predictions = predict(parameters, X_assess)
    print("predictions mean = " + str(np.mean(predictions)))
    
    predictions mean = 0.666666666667
    

    It is time to run the model and see how it performs on a planar dataset. Run the following code to test your model with a single hidden layer of (n_h) hidden units.

    # Build a model with a n_h-dimensional hidden layer
    parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
    
    # Plot the decision boundary
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    plt.title("Decision Boundary for hidden layer size " + str(4))
    
    Cost after iteration 0: 0.692994
    Cost after iteration 1000: 0.311041
    Cost after iteration 2000: 0.111684
    Cost after iteration 3000: 0.108720
    Cost after iteration 4000: 0.107840
    Cost after iteration 5000: 0.107180
    Cost after iteration 6000: 0.106535
    Cost after iteration 7000: 0.105934
    Cost after iteration 8000: 0.105412
    Cost after iteration 9000: 0.104966
    
    
    
    
    
    <matplotlib.text.Text at 0x7f71ae3be6a0>
    

    output_41_2

    # Print accuracy
    predictions = predict(parameters, X)
    print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
    
    Accuracy: 90%
    

    Accuracy is really high compared to Logistic Regression. The model has learnt the leaf patterns of the flower! Neural networks are able to learn even highly non-linear decision boundaries, unlike logistic regression.

    Now, let's try out several hidden layer sizes.

    4.6 - Tuning hidden layer size (optional/ungraded exercise)

    Run the following code. It may take 1-2 minutes. You will observe different behaviors of the model for various hidden layer sizes.

    # This may take about 2 minutes to run
    
    plt.figure(figsize=(16, 32))
    hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]
    for i, n_h in enumerate(hidden_layer_sizes):
        plt.subplot(5, 2, i+1)
        plt.title('Hidden Layer of size %d' % n_h)
        parameters = nn_model(X, Y, n_h, num_iterations = 5000)
        plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
        predictions = predict(parameters, X)
        accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
        print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))
    
    Accuracy for 1 hidden units: 71.0 %
    Accuracy for 2 hidden units: 84.0 %
    Accuracy for 3 hidden units: 97.0 %
    Accuracy for 4 hidden units: 97.5 %
    Accuracy for 5 hidden units: 97.5 %
    Accuracy for 20 hidden units: 100.0 %
    Accuracy for 50 hidden units: 100.0 %
    

    output_45_1

    Interpretation:

    • The larger models (with more hidden units) are able to fit the training set better, until eventually the largest models overfit the data.
    • The best hidden layer size seems to be around n_h = 5. Indeed, a value around here seems to fits the data well without also incurring noticeable overfitting.
    • You will also learn later about regularization, which lets you use very large models (such as n_h = 50) without much overfitting.

    Optional questions:

    Note: Remember to submit the assignment by clicking the blue "Submit Assignment" button at the upper-right.

    Some optional/ungraded questions that you can explore if you wish:

    • What happens when you change the tanh activation for a sigmoid activation or a ReLU activation?
    • Play with the learning_rate. What happens?
    • What if we change the dataset? (See part 5 below!)
    **You've learnt to:** - Build a complete neural network with a hidden layer - Make a good use of a non-linear unit - Implemented forward propagation and backpropagation, and trained a neural network - See the impact of varying the hidden layer size, including overfitting.

    Nice work!

    5) Performance on other datasets

    If you want, you can rerun the whole notebook (minus the dataset part) for each of the following datasets.

    # Datasets
    noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets()
    
    datasets = {"noisy_circles": noisy_circles,
                "noisy_moons": noisy_moons,
                "blobs": blobs,
                "gaussian_quantiles": gaussian_quantiles}
    
    ### START CODE HERE ### (choose your dataset)
    dataset = "gaussian_quantiles"
    ### END CODE HERE ###
    
    X, Y = datasets[dataset]
    X, Y = X.T, Y.reshape(1, Y.shape[0])
    
    # make blobs binary
    if dataset == "blobs":
        Y = Y%2
    
    # Visualize the data
    plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);
    

    output_52_0

    Congrats on finishing this Programming Assignment!

    Reference:

  • 相关阅读:
    天大复试机试练习_003
    C++随手记--字符串转数字
    C++标准库STL 之 我觉得应该有的方法——split
    apt-get 详解&&配置阿里源
    Nginx 图文详解
    MySQL数据库管理常用命令小结
    oracle数据库备份
    SqlServer数据库备份还原步骤
    mysql数据备份与恢复
    Tomcat架构
  • 原文地址:https://www.cnblogs.com/geekfx/p/14018820.html
Copyright © 2011-2022 走看看