zoukankan      html  css  js  c++  java
  • 学习Python

    
    #数据类型
    #在 Python 3.0之前是“语句”,在 Python 3.0中是“函数”,因此print需要加括号
    x=3
    
    print (type(x))
    
    print (x)
    
    print (x+12)
    
    print(x**2)
    
    print(12*19)
    
    t = True
    f = False
    print (type(t)) # Prints "<type 'bool'>"
    print (t and f) # Logical AND; prints "False"
    print (t or f)  # Logical OR; prints "True"
    print (not t)   # Logical NOT; prints "False"
    print (t != f)  # Logical XOR; prints "True" 
    print '
    
    '
    
    
    #字符串
    hello = 'hello'   # String literals can use single quotes
    world = "world"   # or double quotes; it does not matter.
    print (hello)       # Prints "hello"
    print (len(hello))  # String length; prints "5"
    hw = hello + ' ' + world  # String concatenation
    print (hw)  # prints "hello world"
    hw12 = '%s %s %d' % (hello, world, 12)  # sprintf style string formatting
    print (hw12)  # prints "hello world 12"
    
    #字符串函数
    s = "hello"
    print (s.capitalize())  # Capitalize a string; prints "Hello"
    print (s.upper())       # Convert a string to uppercase; prints "HELLO"
    print (s.rjust(7) )     # Right-justify a string, padding with spaces; prints "  hello"
    print (s.center(7))     # Center a string, padding with spaces; prints " hello "
    print (s.replace('l', '(ell)'))  # Replace all instances of one substring with another;
                                   # prints "he(ell)(ell)o"
    print ('  world '.strip())  # Strip leading and trailing whitespace; prints "world"
                                #剥离前置后置空格
    print '
    
    '
    
    
    
    #list
    xs = [3, 1, 2]   # Create a list
    print(xs)
    print (xs, xs[2] ) # Prints "[3, 1, 2] 2"
    print (xs[-3])     # Negative indices count from the end of the list; prints "2"
    xs[2] = 'foo'    # Lists can contain elements of different types
    print (xs)         # Prints "[3, 1, 'foo']"
    xs.append('bar') # Add a new element to the end of the list
    print (xs)         # Prints "[3, 1, 'foo', 'bar']"
    x = xs.pop()     # Remove and return the last element of the list
    print (x, xs )     # Prints "bar [3, 1, 'foo']"
    
    #Slicing
    nums = range(5)    # range is a built-in(内置) function that creates a list of integers
    print (nums[-4])         # Prints "[0, 1, 2, 3, 4]"
    print (nums[2:4])    # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
    print (nums[2:])  # Get a slice from index 2 to the end; prints "[2, 3, 4]"
    print (nums[:2])# Get a slice from the start to index 2 (exclusive); prints "[0, 1, 2]"
    print (nums[:]) # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]"
    print (nums[:-1])  # Slice indices can be negative; prints ["0, 1, 2, 3]"
    nums[2:4] = [8, 9] # Assign a new sublist to a slice
    print (nums)         # Prints "[0, 1, 8, 9, 4]"
    print '
    
    '
    
    
    #loops
    animals = ['cat', 'dog', 'monkey']
    for animal in animals:
        print (animal)
    # Prints "cat", "dog", "monkey", each on its own line.
    
    animals = ['cat', 'dog', 'monkey']
    for idx, animal in enumerate(animals):
        print ('#%d: %s' % (idx + 1, animal))
    # Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line
    print '
    
    '   
    
    
    #list comprehension(列表推导式):
    nums = [0, 1, 2, 3, 4]
    squares = []
    for x in nums:
        squares.append(x ** 2)
    print (squares)   # Prints [0, 1, 4, 9, 16]
    
    
    nums = [0, 1, 2, 3, 4]
    squares = [x ** 2 for x in nums]
    print (squares)   # Prints [0, 1, 4, 9, 16]
    
    
    nums = [0, 1, 2, 3, 4]
    even_squares = [x ** 2 for x in nums if x % 2 == 0]
    print (even_squares)  # Prints "[0, 4, 16]"
    print '
    
    '
    
    
    #Dictionaries
    d = {'cat': 'cute', 'dog': 'furry'}  # Create a new dictionary with some data
    print (d['cat'])       # Get an entry from a dictionary; prints "cute"
    print ('cat' in d)     # Check if a dictionary has a given key; prints "True"
    d['fish'] = 'wet'    # Set an entry in a dictionary
    print (d['fish'])      # Prints "wet"
    # print d['monkey']  # KeyError: 'monkey' not a key of d
    print (d.get('monkey', 'N/A'))  # Get an element with a default; prints "N/A"
    print (d.get('fish', 'N/A') )   # Get an element with a default; prints "wet"
    del d['fish']        # Remove an element from a dictionary
    print (d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A"
    print '
    
    '
    
    
    d = {'person': 2, 'cat': 4, 'spider': 8}
    for animal, legs in d.iteritems():
        print 'A %s has %d legs' % (animal, legs)
    # Prints "A person has 2 legs", "A spider has 8 legs", "A cat has 4 legs"
    print '
    
    '    
    
    
    #Dictionary comprehensions字典推导式: 
    nums = [0, 1, 2, 3, 4]
    even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
    print even_num_to_square  # Prints "{0: 0, 2: 4, 4: 16}"
    print '
    
    '
    
    #Sets
    animals = {'cat', 'dog'}
    print 'cat' in animals   # Check if an element is in a set; prints "True"
    print 'fish' in animals  # prints "False"
    animals.add('fish')      # Add an element to a set
    print 'fish' in animals  # Prints "True"
    print len(animals)       # Number of elements in a set; prints "3"
    animals.add('cat')       # Adding an element that is already in the set does nothing
    print len(animals)       # Prints "3"
    animals.remove('cat')    # Remove an element from a set
    print len(animals)       # Prints "2"
    print '
    '
    
    #Set Loops:集合中的元素无序,不能确定访问的先后顺序
    animals = {'cat', 'dog', 'fish'}
    for idx, animal in enumerate(animals):
        print '#%d: %s' % (idx + 1, animal)
    # Prints "#1: fish", "#2: dog", "#3: cat"
    print '
    '
    
    #Set comprehensions(集合推导式):
    from math import sqrt
    nums = {int(sqrt(x)) for x in range(30)}
    print nums  # Prints "set([0, 1, 2, 3, 4, 5])"
    print '
    
    '
    
    #Tuples(元组)
    d = {(x, x + 1): x for x in range(10)}  # Create a dictionary with tuple keys
    t = (5, 6)       # Create a tuple
    print type(t)    # Prints "<type 'tuple'>"
    print d
    print d[t]       # Prints "5"
    print d[(1, 2)]  # Prints "1"
    print '
    
    '
    
    #Functions
    def sign(x):
        if x > 0:
            return 'positive'
        elif x < 0:
            return 'negative'
        else:
            return 'zero'
    
    for x in [-1, 0, 1]:
        print sign(x)
    # Prints "negative", "zero", "positive"
    print '
    '   
    
    def hello(name, loud=False):
        if loud:
            print 'HELLO, %s!' % name.upper()
        else:
            print 'Hello, %s' % name
    
    hello('Bob') # Prints "Hello, Bob"
    hello('Fred', loud=True)  # Prints "HELLO, FRED!"
    print '
    
    '
    
    #Classes
    class Greeter(object):
    
        # Constructor
        def __init__(self, name):
            self.name = name  # Create an instance variable
    
        # Instance method
        def greet(self, loud=False):
            if loud:
                print 'HELLO, %s!' % self.name.upper()
            else:
                print 'Hello, %s' % self.name
    
    g = Greeter('Fred')  # Construct an instance of the Greeter class
    g.greet()            # Call an instance method; prints "Hello, Fred"
    g.greet(loud=True)   # Call an instance method; prints "HELLO, FRED!"
    print '
    
    '
    
    #Numpy
    #Arrays
    import numpy as np
    
    a = np.array([1, 2, 3])  # Create a rank 1 array
    print type(a)            # Prints "<type 'numpy.ndarray'>"
    print a.shape            # Prints "(3,)"
    print a[0], a[1], a[2]   # Prints "1 2 3"
    a[0] = 5                 # Change an element of the array
    print a                  # Prints "[5, 2, 3]"
    
    b = np.array([[1,2,3],[4,5,6]])   # Create a rank 2 array
    print b.shape                     # Prints "(2, 3)"
    print b[0, 0], b[0, 1], b[1, 0]   # Prints "1 2 4"
    print '
    '
    
    import numpy as np
    
    a = np.zeros((2,2))  # Create an array of all zeros
    print a              # Prints "[[ 0.  0.]
                         #          [ 0.  0.]]"
    
    b = np.ones((1,2))   # Create an array of all ones
    print b              # Prints "[[ 1.  1.]]"
    
    c = np.full((2,2), 7) # Create a constant array
    print c               # Prints "[[ 7.  7.]
                          #          [ 7.  7.]]"
    
    d = np.eye(2)        # Create a 2x2 identity matrix(单位矩阵)
    print d              # Prints "[[ 1.  0.]
                         #          [ 0.  1.]]"
    
    e = np.random.random((2,2)) # Create an array filled with random values
    print e                     # Might print "[[ 0.91940167  0.08143941]
                                #               [ 0.68744134  0.87236687]]"
    print '
    
    '
    
    #Array indexing
    import numpy as np
    
    # Create the following rank 2 array with shape (3, 4)
    # [[ 1  2  3  4]
    #  [ 5  6  7  8]
    #  [ 9 10 11 12]]
    a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
    print a
    # Use slicing to pull out the subarray consisting of the first 2 rows
    # and columns 1 and 2; b is the following array of shape (2, 2):
    # [[2 3]
    #  [6 7]]
    b = a[:2, 1:3]
    print b #b数组只是a数组的引用
    # A slice of an array is a view into the same data, so modifying it
    # will modify the original array.
    print a[0, 1]   # Prints "2"
    b[0, 0] = 77    # b[0, 0] is the same piece of data as a[0, 1]
    print a[0, 1]   # Prints "77"
    print '
    
    '
    
    
    
    import numpy as np
    
    # Create the following rank 2 array with shape (3, 4)
    # [[ 1  2  3  4]
    #  [ 5  6  7  8]
    #  [ 9 10 11 12]]
    a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
    
    # Two ways of accessing the data in the middle row of the array.
    # Mixing integer indexing with slices yields an array of lower rank,
    # while using only slices yields an array of the same rank as the
    # original array:
    row_r1 = a[1, :]    # Rank 1 view of the second row of a  
    row_r2 = a[1:2, :]  # Rank 2 view of the second row of a
    print row_r1, row_r1.shape  # Prints "[5 6 7 8] (4,)"
    print row_r2, row_r2.shape  # Prints "[[5 6 7 8]] (1, 4)"
    
    # We can make the same distinction when accessing columns of an array:
    col_r1 = a[:, 1]
    col_r2 = a[:, 1:2]
    print col_r1, col_r1.shape  # Prints "[ 2  6 10] (3,)"
    print col_r2, col_r2.shape  # Prints "[[ 2]
                                #          [ 6]
                                #          [10]] (3, 1)"
    print '
    
    
    
    '
    
    import numpy as np
    
    a = np.array([[1,2], [3, 4], [5, 6]])
    
    # An example of integer array indexing.
    # The returned array will have shape (3,) and 
    print a[[0, 1, 2], [0, 1, 0]]  # Prints "[1 4 5]"
    
    # The above example of integer array indexing is equivalent to this:
    print np.array([a[0, 0], a[1, 1], a[2, 0]])  # Prints "[1 4 5]"
    
    # When using integer array indexing, you can reuse the same
    # element from the source array:
    print a[[0, 0], [1, 1]]  # Prints "[2 2]"
    
    # Equivalent to the previous integer array indexing example
    print np.array([a[0, 1], a[0, 1]])  # Prints "[2 2]"
    
    
    # Create a new array from which we will select elements
    a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    
    print a  # prints "array([[ 1,  2,  3],
             #                [ 4,  5,  6],
             #                [ 7,  8,  9],
             #                [10, 11, 12]])"
    
    # Create an array of indices
    b = np.array([0, 2, 0, 1])
    
    # Select one element from each row of a using the indices in b
    print a[np.arange(4), b]  # Prints "[ 1  6  7 11]"
    
    # Mutate one element from each row of a using the indices in b
    a[np.arange(4), b] += 10
    
    print a  # prints "array([[11,  2,  3],
             #                [ 4,  5, 16],
             #                [17,  8,  9],
             #                [10, 21, 12]])
    
    
    a = np.array([[1,2], [3, 4], [5, 6]])
    
    bool_idx = (a > 2)  # Find the elements of a that are bigger than 2;
                        # this returns a numpy array of Booleans of the same
                        # shape as a, where each slot of bool_idx tells
                        # whether that element of a is > 2.
    
    print bool_idx      # Prints "[[False False]
                        #          [ True  True]
                        #          [ True  True]]"
    
    # We use boolean array indexing to construct a rank 1 array
    # consisting of the elements of a corresponding to the True values
    # of bool_idx
    print a[bool_idx]  # Prints "[3 4 5 6]"
    
    # We can do all of the above in a single concise statement:
    print a[a > 2]     # Prints "[3 4 5 6]"
    print '
    
    '
    
    
    #Datatypes
    import numpy as np
    
    x = np.array([1, 2])  # Let numpy choose the datatype
    print x.dtype         # Prints "int64"
    
    x = np.array([1.0, 2.0])  # Let numpy choose the datatype
    print x.dtype             # Prints "float64"
    
    x = np.array([1, 2], dtype=np.int64)  # Force a particular datatype
    print x.dtype                         # Prints "int64"
    
    
    #Array math
    import numpy as np
    
    x = np.array([[1,2],[3,4]], dtype=np.float64)
    y = np.array([[5,6],[7,8]], dtype=np.float64)
    
    # Elementwise sum; both produce the array
    # [[ 6.0  8.0]
    #  [10.0 12.0]]
    print x + y
    print np.add(x, y)
    
    # Elementwise difference; both produce the array
    # [[-4.0 -4.0]
    #  [-4.0 -4.0]]
    print x - y
    print np.subtract(x, y)
    
    # Elementwise product; both produce the array
    # [[ 5.0 12.0]
    #  [21.0 32.0]]
    print x * y
    print np.multiply(x, y)
    
    # Elementwise division; both produce the array
    # [[ 0.2         0.33333333]
    #  [ 0.42857143  0.5       ]]
    print x / y
    print np.divide(x, y)
    
    # Elementwise square root; produces the array
    # [[ 1.          1.41421356]
    #  [ 1.73205081  2.        ]]
    print np.sqrt(x)
    
    
    import numpy as np
    
    x = np.array([[1,2],[3,4]])
    y = np.array([[5,6],[7,8]])
    
    v = np.array([9,10])
    w = np.array([11, 12])
    
    # Inner product of vectors; both produce 219
    print v.dot(w)
    print np.dot(v, w)
    
    # Matrix / vector product; both produce the rank 1 array [29 67]
    print x.dot(v)
    print np.dot(x, v)
    
    # Matrix / matrix product; both produce the rank 2 array
    # [[19 22]
    #  [43 50]]
    print x.dot(y)
    print np.dot(x, y)
    
    
    
    import numpy as np
    
    x = np.array([[1,2],[3,4]])
    
    print np.sum(x)  # Compute sum of all elements; prints "10"
    print np.sum(x, axis=0)  # Compute sum of each column; prints "[4 6]"
    print np.sum(x, axis=1)  # Compute sum of each row; prints "[3 7]"
    
    
    
    import numpy as np
    
    x = np.array([[1,2], [3,4]])
    print x    # Prints "[[1 2]
               #          [3 4]]"
    print x.T  # Prints "[[1 3]
               #          [2 4]]"
    
    # Note that taking the transpose of a rank 1 array does nothing:
    v = np.array([1,2,3])
    print v    # Prints "[1 2 3]"
    print v.T  # Prints "[1 2 3]"
    
    #Broadcasting
    import numpy as np
    
    # We will add the vector v to each row of the matrix x,
    # storing the result in the matrix y
    x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    v = np.array([1, 0, 1])
    y = np.empty_like(x)   # Create an empty matrix with the same shape as x
    
    # Add the vector v to each row of the matrix x with an explicit loop
    for i in range(4):
        y[i, :] = x[i, :] + v
    
    # Now y is the following
    # [[ 2  2  4]
    #  [ 5  5  7]
    #  [ 8  8 10]
    #  [11 11 13]]
    print y
    
    
    import numpy as np
    
    # We will add the vector v to each row of the matrix x,
    # storing the result in the matrix y
    x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    v = np.array([1, 0, 1])
    vv = np.tile(v, (4, 1))  # Stack 4 copies of v on top of each other
    print vv                 # Prints "[[1 0 1]
                             #          [1 0 1]
                             #          [1 0 1]
                             #          [1 0 1]]"
    y = x + vv  # Add x and vv elementwise
    print y  # Prints "[[ 2  2  4
             #          [ 5  5  7]
             #          [ 8  8 10]
             #          [11 11 13]]"
    
    
    import numpy as np
    
    # We will add the vector v to each row of the matrix x,
    # storing the result in the matrix y
    x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    v = np.array([1, 0, 1])
    y = x + v  # Add v to each row of x using broadcasting
    print y  # Prints "[[ 2  2  4]
             #          [ 5  5  7]
             #          [ 8  8 10]
             #          [11 11 13]]"
    
    
    import numpy as np
    
    # Compute outer product of vectors
    v = np.array([1,2,3])  # v has shape (3,)
    w = np.array([4,5])    # w has shape (2,)
    # To compute an outer product, we first reshape v to be a column
    # vector of shape (3, 1); we can then broadcast it against w to yield
    # an output of shape (3, 2), which is the outer product of v and w:
    # [[ 4  5]
    #  [ 8 10]
    #  [12 15]]
    print np.reshape(v, (3, 1)) * w
    
    # Add a vector to each row of a matrix
    x = np.array([[1,2,3], [4,5,6]])
    # x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
    # giving the following matrix:
    # [[2 4 6]
    #  [5 7 9]]
    print x + v
    
    # Add a vector to each column of a matrix
    # x has shape (2, 3) and w has shape (2,).
    # If we transpose x then it has shape (3, 2) and can be broadcast
    # against w to yield a result of shape (3, 2); transposing this result
    # yields the final result of shape (2, 3) which is the matrix x with
    # the vector w added to each column. Gives the following matrix:
    # [[ 5  6  7]
    #  [ 9 10 11]]
    print (x.T + w).T
    # Another solution is to reshape w to be a row vector of shape (2, 1);
    # we can then broadcast it directly against x to produce the same
    # output.
    print x + np.reshape(w, (2, 1))
    
    # Multiply a matrix by a constant:
    # x has shape (2, 3). Numpy treats scalars as arrays of shape ();
    # these can be broadcast together to shape (2, 3), producing the
    # following array:
    # [[ 2  4  6]
    #  [ 8 10 12]]
    print x * 2
    print '
    
    '
    
    #Numpy Documentation
    #Image operations
    from scipy.misc import imread, imsave, imresize
    
    # Read an JPEG image into a numpy array
    img = imread('cat.jpg')
    print img.dtype, img.shape  # Prints "uint8 (400, 248, 3)"
    
    # We can tint the image by scaling each of the color channels
    # by a different scalar constant. The image has shape (400, 248, 3);
    # we multiply it by the array [1, 0.95, 0.9] of shape (3,);
    # numpy broadcasting means that this leaves the red channel unchanged,
    # and multiplies the green and blue channels by 0.95 and 0.9
    # respectively.
    img_tinted = img * [1, 0.95, 0.9]
    
    # Resize the tinted image to be 300 by 300 pixels.
    img_tinted = imresize(img_tinted, (300, 300))
    
    # Write the tinted image back to disk
    imsave('cat_tinted.jpg', img_tinted)
    print '
    
    '
    
    #MATLAB files
    #Distance between points
    import numpy as np
    from scipy.spatial.distance import pdist, squareform
    
    # Create the following array where each row is a point in 2D space:
    # [[0 1]
    #  [1 0]
    #  [2 0]]
    x = np.array([[0, 1], [1, 0], [2, 0]])
    print x
    
    # Compute the Euclidean distance between all rows of x.
    # d[i, j] is the Euclidean distance between x[i, :] and x[j, :],
    # and d is the following array:
    # [[ 0.          1.41421356  2.23606798]
    #  [ 1.41421356  0.          1.        ]
    #  [ 2.23606798  1.          0.        ]]
    d = squareform(pdist(x, 'euclidean'))
    print d
    
    #Matplotlib
    #Plotting
    import numpy as np
    import matplotlib.pyplot as plt
    
    # Compute the x and y coordinates for points on a sine curve
    x = np.arange(0, 3 * np.pi, 0.1)
    y = np.sin(x)
    
    # Plot the points using matplotlib
    plt.plot(x, y)
    plt.show()  # You must call plt.show() to make graphics appear.
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    # Compute the x and y coordinates for points on sine and cosine curves
    x = np.arange(0, 3 * np.pi, 0.1)
    y_sin = np.sin(x)
    y_cos = np.cos(x)
    
    # Plot the points using matplotlib
    plt.plot(x, y_sin)
    plt.plot(x, y_cos)
    plt.xlabel('x axis label')
    plt.ylabel('y axis label')
    plt.title('Sine and Cosine')
    plt.legend(['Sine', 'Cosine'])
    plt.show()
    
    
    #Subplots
    import numpy as np
    import matplotlib.pyplot as plt
    
    # Compute the x and y coordinates for points on sine and cosine curves
    x = np.arange(0, 3 * np.pi, 0.1)
    y_sin = np.sin(x)
    y_cos = np.cos(x)
    
    # Set up a subplot grid that has height 2 and width 1,
    # and set the first such subplot as active.
    plt.subplot(2, 1, 1)
    
    # Make the first plot
    plt.plot(x, y_sin)
    plt.title('Sine')
    
    # Set the second subplot as active, and make the second plot.
    plt.subplot(2, 1, 2)
    plt.plot(x, y_cos)
    plt.title('Cosine')
    
    # Show the figure.
    plt.show()
    
    print'
    
    '
    
    
    #Images
    import numpy as np
    from scipy.misc import imread, imresize
    import matplotlib.pyplot as plt
    
    img = imread('cat.jpg')
    img_tinted = img * [1, 0.95, 0.9]
    
    # Show the original image
    plt.subplot(1, 2, 1)
    plt.imshow(img)
    
    # Show the tinted image
    plt.subplot(1, 2, 2)
    
    # A slight gotcha with imshow is that it might give strange results
    # if presented with data that is not uint8. To work around this, we
    # explicitly cast the image to uint8 before displaying it.
    plt.imshow(np.uint8(img_tinted))
    plt.show()
    
    

    运行结果:

    <type 'int'>
    3
    15
    9
    228
    <type 'bool'>
    False
    True
    False
    True
    
    
    
    hello
    5
    hello world
    hello world 12
    Hello
    HELLO
      hello
     hello 
    he(ell)(ell)o
    world
    
    
    
    [3, 1, 2]
    ([3, 1, 2], 2)
    3
    [3, 1, 'foo']
    [3, 1, 'foo', 'bar']
    ('bar', [3, 1, 'foo'])
    1
    [2, 3]
    [2, 3, 4]
    [0, 1]
    [0, 1, 2, 3, 4]
    [0, 1, 2, 3]
    [0, 1, 8, 9, 4]
    
    
    
    cat
    dog
    monkey
    #1: cat
    #2: dog
    #3: monkey
    
    
    
    [0, 1, 4, 9, 16]
    [0, 1, 4, 9, 16]
    [0, 4, 16]
    
    
    
    cute
    True
    wet
    N/A
    wet
    N/A
    
    
    
    A person has 2 legs
    A spider has 8 legs
    A cat has 4 legs
    
    
    
    {0: 0, 2: 4, 4: 16}
    
    
    
    True
    False
    True
    3
    3
    2
    
    
    #1: fish
    #2: dog
    #3: cat
    
    
    set([0, 1, 2, 3, 4, 5])
    
    
    
    <type 'tuple'>
    {(0, 1): 0, (1, 2): 1, (6, 7): 6, (5, 6): 5, (7, 8): 7, (8, 9): 8, (4, 5): 4, (2, 3): 2, (9, 10): 9, (3, 4): 3}
    5
    1
    
    
    
    negative
    zero
    positive
    
    
    Hello, Bob
    HELLO, FRED!
    
    
    
    Hello, Fred
    HELLO, FRED!
    
    
    
    <type 'numpy.ndarray'>
    (3L,)
    1 2 3
    [5 2 3]
    (2L, 3L)
    1 2 4
    
    
    [[ 0.  0.]
     [ 0.  0.]]
    [[ 1.  1.]]
    [[ 7.  7.]
     [ 7.  7.]]
    [[ 1.  0.]
     [ 0.  1.]]
    [[ 0.17549336  0.2399925 ]
     [ 0.5394008   0.44558024]]
    
    
    
    [[ 1  2  3  4]
     [ 5  6  7  8]
     [ 9 10 11 12]]
    [[2 3]
     [6 7]]
    2
    77
    
    
    
    [5 6 7 8] (4L,)
    [[5 6 7 8]] (1L, 4L)
    [ 2  6 10] (3L,)
    [[ 2]
     [ 6]
     [10]] (3L, 1L)
    
    
    
    
    
    [1 4 5]
    [1 4 5]
    [2 2]
    [2 2]
    [[ 1  2  3]
     [ 4  5  6]
     [ 7  8  9]
     [10 11 12]]
    [ 1  6  7 11]
    [[11  2  3]
     [ 4  5 16]
     [17  8  9]
     [10 21 12]]
    [[False False]
     [ True  True]
     [ True  True]]
    [3 4 5 6]
    [3 4 5 6]
    
    
    
    int32
    float64
    int64
    [[  6.   8.]
     [ 10.  12.]]
    [[  6.   8.]
     [ 10.  12.]]
    [[-4. -4.]
     [-4. -4.]]
    [[-4. -4.]
     [-4. -4.]]
    [[  5.  12.]
     [ 21.  32.]]
    [[  5.  12.]
     [ 21.  32.]]
    [[ 0.2         0.33333333]
     [ 0.42857143  0.5       ]]
    [[ 0.2         0.33333333]
     [ 0.42857143  0.5       ]]
    [[ 1.          1.41421356]
     [ 1.73205081  2.        ]]
    219
    219
    [29 67]
    [29 67]
    [[19 22]
     [43 50]]
    [[19 22]
     [43 50]]
    10
    [4 6]
    [3 7]
    [[1 2]
     [3 4]]
    [[1 3]
     [2 4]]
    [1 2 3]
    [1 2 3]
    [[ 2  2  4]
     [ 5  5  7]
     [ 8  8 10]
     [11 11 13]]
    [[1 0 1]
     [1 0 1]
     [1 0 1]
     [1 0 1]]
    [[ 2  2  4]
     [ 5  5  7]
     [ 8  8 10]
     [11 11 13]]
    [[ 2  2  4]
     [ 5  5  7]
     [ 8  8 10]
     [11 11 13]]
    [[ 4  5]
     [ 8 10]
     [12 15]]
    [[2 4 6]
     [5 7 9]]
    [[ 5  6  7]
     [ 9 10 11]]
    [[ 5  6  7]
     [ 9 10 11]]
    [[ 2  4  6]
     [ 8 10 12]]
    
    
    
    uint8 (334L, 500L, 3L)
    
    
    
    [[0 1]
     [1 0]
     [2 0]]
    [[ 0.          1.41421356  2.23606798]
     [ 1.41421356  0.          1.        ]
     [ 2.23606798  1.          0.        ]]
     ![这里写图片描述](//img-blog.csdn.net/20160405213404851)
     ![这里写图片描述](//img-blog.csdn.net/20160405213420179)
     ![这里写图片描述](//img-blog.csdn.net/20160405213434460)
     ![这里写图片描述](//img-blog.csdn.net/20160405213447976)
    keep calm and carry on
  • 相关阅读:
    高性能 Socket 组件 HP-Socket v3.1.3 正式发布
    【新年呈献】高性能 Socket 组件 HP-Socket v3.1.2 正式发布
    更新整理本人所有博文中提供的代码与工具(Java,2014.01)
    更新整理本人所有博文中提供的代码与工具(C++,2014.01)
    【圣诞呈献】高性能 Socket 组件 HP-Socket v3.1.1 正式发布
    更新整理本人所有博文中提供的代码与工具(Java,2013.11)
    更新整理本人所有博文中提供的代码与工具(C++,2013.11)
    高性能 Windows Socket 组件 HP-Socket v3.0.2 正式发布
    高效 Java Web 开发框架 JessMA v3.3.1 正式发布
    高效 Java Web 开发框架 JessMA v3.3.1 Beta-1 发布
  • 原文地址:https://www.cnblogs.com/geekvc/p/6657320.html
Copyright © 2011-2022 走看看