zoukankan      html  css  js  c++  java
  • hdu2586(lca模板 / tarjan离线 + RMQ在线)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2586

    题意: 给出一棵 n 个节点的带边权的树, 有 m 个形如 x y 的询问, 要求输出所有 x, y节点之间的最短距离.

    思路: dis[i] 存储 i 节点到根节点的最短距离, lca 为 x, y 的最近公共祖先, 那么 x, y 之间的最短距离为: dis[x] + dis[y] - 2 * dis[lca] .

    解法1: tarjan离线算法

    关于该算法

     1 Tarjan(u)//marge和find为并查集合并函数和查找函数
     2 {
     3     for each(u,v)    //访问所有u子节点v
     4     {
     5         Tarjan(v);        //继续往下遍历
     6         marge(u,v);    //合并v到u上
     7         标记v被访问过;
     8     }
     9     for each(u,e)    //访问所有和u有询问关系的e
    10     {
    11         如果e被访问过;
    12         u,e的最近公共祖先为find(e);
    13     }
    14 }

    详解见: http://www.cnblogs.com/ECJTUACM-873284962/p/6613379.html

    代码:

     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 using namespace std;
     5 
     6 const int MAXN = 4e4 + 10;
     7 struct node{
     8     int u, v, w, lca, next;
     9 }edge1[MAXN << 1], edge2[810];//edge1记录树, edge2记录询问
    10 
    11 int vis[MAXN], pre[MAXN], dis[MAXN];//vis[i]标记i是否已经搜索过, pre[i]记录i的根节点, dis[i]记录i到根节点的距离
    12 int head1[MAXN], head2[MAXN], ance[MAXN], ip1, ip2;
    13 
    14 void init(void){
    15     memset(vis, 0, sizeof(vis));
    16     memset(dis, 0, sizeof(dis));
    17     memset(head1, -1, sizeof(head1));
    18     memset(head2, -1, sizeof(head2));
    19     ip1 = ip2 = 0;
    20 }
    21 
    22 void addedge1(int u, int v, int w){//前向星
    23     edge1[ip1].v = v;
    24     edge1[ip1].w = w;
    25     edge1[ip1].next = head1[u];
    26     head1[u] = ip1++;
    27 }
    28 
    29 void addedge2(int u, int v){
    30     edge2[ip2].u = u;
    31     edge2[ip2].v = v;
    32     edge2[ip2].lca = -1;
    33     edge2[ip2].next = head2[u];
    34     head2[u] = ip2++;
    35 }
    36 
    37 int find(int x){
    38     return pre[x] == x ? x : pre[x] = find(pre[x]);
    39 }
    40 
    41 void jion(int x, int y){
    42     x = find(x);
    43     y = find(y);
    44     if(x != y) pre[y] = x;
    45 }
    46 
    47 void tarjan(int u){
    48     vis[u] = 1;
    49     ance[u] = pre[u] = u;
    50     for(int i = head1[u]; i != -1; i = edge1[i].next){
    51         int v = edge1[i].v;
    52         int w = edge1[i].w;
    53         if(!vis[v]){
    54             dis[v] = dis[u] + w;
    55             tarjan(v);
    56             jion(u, v);
    57         }
    58     }
    59     for(int i = head2[u]; i != -1; i = edge2[i].next){
    60         int v = edge2[i].v;
    61         if(vis[v]) edge2[i].lca = edge2[i ^ 1].lca = ance[find(v)];
    62     }
    63 }
    64 
    65 int main(void){
    66     int t, n, m, x, y, z;
    67     scanf("%d", &t);
    68     while(t--){
    69         init();
    70         scanf("%d%d", &n, &m);
    71         for(int i = 1; i < n; i++){
    72             scanf("%d%d%d", &x, &y, &z);
    73             addedge1(x, y, z);
    74             addedge1(y, x, z);
    75         }
    76         for(int i = 0; i < m; i++){
    77             scanf("%d%d", &x, &y);
    78             addedge2(x, y);
    79             addedge2(y, x);
    80         }
    81         dis[1] = 0;
    82         tarjan(1);
    83         for(int i = 0; i < m; i++){
    84             int cc = i << 1;
    85             int u = edge2[cc].u;
    86             int v = edge2[cc].v;
    87             int lca = edge2[cc].lca;
    88             printf("%d
    ", dis[u] + dis[v] - 2 * dis[lca]);
    89         }
    90     }
    91     return 0;
    92 }
    View Code

    解法2: lca转RMQ

    关于该算法

    ver[] 存储树的 dfs 路径

    first[u] 为顶点 u 在 ver 数组中第一次出现时的下标

    deep[indx] 为顶点 ver[indx] 的深度

    对于求 x, y 的 lca, 先令 l = first[x], r = first[y], 即 l, r 分别为 x, y 第一次在 ver 数组中出现时对应的下标

    在 deep[] 数组中找到区间 [l, r] 中的最小值, 其下标对应的 ver 值即为 x, y 的 lca. (区间最值可以用 RMQ 处理)

    详解见: http://blog.csdn.net/u013076044/article/details/41870751

    代码:

     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 #include <math.h>
     5 using namespace std;
     6 
     7 const int MAXN = 4e4 + 10;
     8 struct node{
     9     int v, w, next;
    10 }edge[MAXN << 1];
    11 
    12 int dp[MAXN << 1][30]; //dp[i][j]存储deep数组中下标i开始长度为2^j的子串中最小值的下标
    13 int first[MAXN], ver[MAXN << 1], deep[MAXN << 1];
    14 int vis[MAXN], head[MAXN], dis[MAXN], ip, indx;
    15 
    16 inline void init(void){
    17     memset(vis, 0, sizeof(vis));
    18     memset(head, -1, sizeof(head));
    19     ip = 0;
    20     indx = 0;
    21 }
    22 
    23 void addedge(int u, int v, int w){
    24     edge[ip].v = v;
    25     edge[ip].w = w;
    26     edge[ip].next = head[u];
    27     head[u] = ip++;
    28 }
    29 
    30 void dfs(int u, int h){
    31     vis[u] = 1; //标记已搜索过的点
    32     ver[++indx] = u; //记录dfs路径
    33     first[u] = indx; //记录顶点u第一次出现时对应的ver数组的下标
    34     deep[indx] = h; //记录ver数组中对应下标的点的深度
    35     for(int i = head[u]; i != -1; i = edge[i].next){
    36         int v = edge[i].v;
    37         if(!vis[v]){
    38             dis[v] = dis[u] + edge[i].w;
    39             dfs(v, h + 1);
    40             ver[++indx] = u;
    41             deep[indx] = h;
    42         }
    43     }
    44 }
    45 
    46 void ST(int n){
    47     for(int i = 1; i <= n; i++){
    48         dp[i][0] = i;
    49     }
    50     for(int j = 1; (1 << j) <= n; j++){
    51         for(int i = 1; i + (1 << j) - 1 <= n; i++){
    52             int x = dp[i][j - 1], y = dp[i + (1 << (j - 1))][j - 1];
    53             dp[i][j] = deep[x] < deep[y] ? x : y;
    54         }
    55     }
    56 }
    57 
    58 int RMQ(int l, int r){
    59     int len = log2(r - l + 1);
    60     int x = dp[l][len], y = dp[r - (1 << len) + 1][len];
    61     return deep[x] < deep[y] ? x : y;
    62 }
    63 
    64 int LCA(int x, int y){
    65     int l = first[x], r = first[y];
    66     if(l > r) swap(l, r);
    67     int pos = RMQ(l, r);
    68     return ver[pos];
    69 }
    70 
    71 int main(void){
    72     int t, n, m, x, y, z;
    73     scanf("%d", &t);
    74     while(t--){
    75         init();
    76         scanf("%d%d", &n, &m);
    77         for(int i = 1; i < n; i++){
    78             scanf("%d%d%d", &x, &y, &z);
    79             addedge(x, y, z);
    80             addedge(y, x, z);
    81         }
    82         dis[1] = 0;
    83         dfs(1, 1);
    84         ST(2 * n - 1);
    85         for(int i = 0; i < m; i++){
    86             scanf("%d%d", &x, &y);
    87             int lca = LCA(x, y);
    88             printf("%d
    ", dis[x] + dis[y] - 2 * dis[lca]);
    89         }
    90     }
    91     return 0;
    92 }
    View Code
  • 相关阅读:
    split a string into an array through comma
    正则表达式替换日期
    在Ajax1.0中调用页面CS文件中的方法
    半透明的div对话框
    foreach 的自动转化类型
    ViewStateAutoManager
    using ISerializable to control serialization and deserialization
    div with separated html template
    2018.9.9作业
    CSS单位
  • 原文地址:https://www.cnblogs.com/geloutingyu/p/7202710.html
Copyright © 2011-2022 走看看