zoukankan      html  css  js  c++  java
  • GAN生成对抗网络-text to image原理与基本实现-文字转图像-11

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    实质上这是一个RNN的词语向量化模型 + 条件GAN
    首先用一个RNN网络来将文字转换为向量,然后将生成的文
    本向量加入到G和D网络中。

    与普通GAN不同的是,这里多了一种错误情况,即看上去挺
    真的,但是对应的描述与图不符合,也要给与惩罚。
    如果不加的话,那么D所能获得的信息仅仅是G的生成图,失
    去了判断图与描述是否符合的判断能力。

    为什么还需要噪声输入?
    这是因为一般情况下很多时候一句话就是描述内容(花的样
    子)的,而不会描述style(style主要是包括背景和姿态)。
    那么这种情况下我们就希望噪声能起到这种加入style的作用
    ,从而生成更加真实多样化的图片。

    另外,通过特征可视化的方式,让z具有specific的style加入
    功能,从而解决文本描述本身不对style进行任何阐述的问题,
    随机化的z可以加入不同的style,从而增加生成样本的真实
    性与多样性。

    三个重点部分:
    一、对于文本的处理,如何提取文本信息,作为我们生成器
    的条件?
    首先是如何文本的向量化
    然后提取文本信息

    二、对于图片的处理,需要添加负面的训练:
    即:输入的文本和图片不对应的时候,要给出惩罚。
    做出输入的队列:
    正确的图片 + 正确的文本
    错误的图片 + 错误的文本

    三、创建输入队列
    保证文本和图片对应

    import tensorflow as tf
    from gensim.models import word2vec
    from gensim.models import Word2Vec
    import pandas as pd
    import glob
    import numpy as np
    import os
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    from IPython import display
    
    os.listdir('../input/gan-text-to-image-102flowers-rieyuguanghua')
    

    在这里插入图片描述

    n_input = 100
    n_hidden = 128
    image_height = 64
    image_width = 64
    image_depth = 3
    noise_dim = 100
    maxlength = 250
    NUM_EPOCHS = 100
    batch_size = 64
    
    if not os.path.exists('102flowers'):
        !mkdir 102flowers
        !tar zxvf ../input/102flowersdataset/102flowers.tgz -C ./102flowers/
    display.clear_output()
    
    all_text_filename = glob.glob('../input/cvpr2016/cvpr2016_flowers/text_c10/class_*/image_*.txt')
    
    all_text_filename.sort(key=lambda x:x.split('/')[-1])
    
    all_image_filename = glob.glob('./102flowers/jpg/*.jpg')
    
    all_image_filename.sort()
    

    在这里插入图片描述

    all_text_filename = np.array(all_text_filename)
    all_image_filename = np.array(all_image_filename)
    wrong_image_filename = all_image_filename[np.random.permutation(len(all_image_filename))]
    
    dataset_image = tf.data.Dataset.from_tensor_slices((all_image_filename, wrong_image_filename))
    

    在这里插入图片描述

    if not os.path.exists('../input/gan-text-to-image-102flowers-rieyuguanghua/all_text.txt'):
        with open('all_text.txt', 'at') as f:
            for a_text in all_text_filename:
                f.write(open(a_text).read().replace('
    ', '') + '
    ')
    if not os.path.exists('../input/gan-text-to-image-102flowers-rieyuguanghua/word_model'):
        sentences = word2vec.Text8Corpus('all_text.txt')
        model = word2vec.Word2Vec(sentences, size=100)
        model.save('word_model')
    else:
        model = Word2Vec.load('../input/gan-text-to-image-102flowers-rieyuguanghua/word_model')
        !cp ../input/gan-text-to-image-102flowers-rieyuguanghua/all_text.txt ./
        !cp ../input/gan-text-to-image-102flowers-rieyuguanghua/word_model ./
    word_vectors = model.wv
    
    maxlength = max([len(open(a_text).read().split()) for a_text in all_text_filename])
    
    n_steps = maxlength
    
    def pad(x, maxlength=200):
        x1 = np.zeros((maxlength,100))
        x1[:len(x)] = x
        return x1
    
    def text_vec(text_filenames):
        vec = []
        for a_text in text_filenames:
            all_word = open(a_text).read().split()
            all_vec = [word_vectors[w] for w in all_word if w in word_vectors]
            vec.append(all_vec)
        data = pd.Series(vec)
        data = data.apply(pad, maxlength=maxlength)
        data_ = np.concatenate(data).reshape(len(data),maxlength,100)
        return data_
    
    data_text_emb = text_vec(all_text_filename)
    

    在这里插入图片描述

    def read_image(image_filename):
        image = tf.read_file(image_filename)
        image = tf.image.decode_jpeg(image, channels=3)
        image = tf.image.resize_image_with_crop_or_pad(image, 512, 512)
        image = tf.image.resize_images(image, (256, 256))
        #image = tf.image.convert_image_dtype(image, tf.float32)
        image = (image - tf.reduce_min(image))/(tf.reduce_max(image) - tf.reduce_min(image))
        return image
    
    def _pre_func(real_image_name, wrong_image_name):
        wrong_image = read_image(wrong_image_name)
        real_image = read_image(real_image_name)
        return real_image, wrong_image
    
    dataset_image = dataset_image.map(_pre_func)
    
    dataset_image = dataset_image.batch(batch_size)
    
    iterator = tf.data.Iterator.from_structure(dataset_image.output_types, dataset_image.output_shapes)
    real_image_batch, wrong_image_batch = iterator.get_next()
    
    input_text = tf.placeholder(tf.float32, [None, n_steps, n_input])
    inputs_noise = tf.placeholder(tf.float32, [None, noise_dim], name='inputs_noise')
    
    def length(shuru):
        return tf.reduce_sum(tf.sign(tf.reduce_max(tf.abs(shuru),reduction_indices=2)),reduction_indices=1)
    
    def text_rnn(input_text, batch_size=64, reuse= tf.AUTO_REUSE):
        cell = tf.contrib.rnn.GRUCell(n_hidden,
                                      kernel_initializer = tf.truncated_normal_initializer(stddev=0.0001),
                                      bias_initializer = tf.truncated_normal_initializer(stddev=0.0001),
                                      reuse=reuse)
        output, _ = tf.nn.dynamic_rnn(
                                      cell,
                                      input_text,
                                      dtype=tf.float32,
                                      sequence_length = length(input_text)
                                      )
    
        index = tf.range(0,batch_size)*n_steps + (tf.cast(length(input_text),tf.int32) - 1)
        flat = tf.reshape(output,[-1,int(output.get_shape()[2])])
        last = tf.gather(flat,index)
        return last
    
    def get_generator(noise_img, image_depth, condition_label, is_train=True, alpha=0.2):
        with tf.variable_scope("generator", reuse= tf.AUTO_REUSE):
            # 100 x 1 to 4 x 4 x 512
            # 全连接层
            noise_img = tf.to_float(noise_img)
            noise_img = tf.layers.dense(noise_img, n_hidden)
            noise_img = tf.maximum(alpha * noise_img, noise_img)
            noise_img_ = tf.concat([noise_img, condition_label], 1)
            layer1 = tf.layers.dense(noise_img_, 4*4*512)
            layer1 = tf.reshape(layer1, [-1, 4, 4, 512])
            layer1 = tf.layers.batch_normalization(layer1, training=is_train)
            layer1 = tf.nn.relu(layer1)
            # batch normalization
            #layer1 = tf.layers.batch_normalization(layer1, training=is_train)
            # ReLU
            #layer1 = tf.nn.relu(layer1)
            # dropout
            layer1 = tf.nn.dropout(layer1, keep_prob=0.8)
            
            # 4 x 4 x 512 to 8 x 8 x 256
            layer2 = tf.layers.conv2d_transpose(layer1, 256, 3, strides=2, padding='same')
            layer2 = tf.layers.batch_normalization(layer2, training=is_train)
            layer2 = tf.nn.relu(layer2)
            layer2 = tf.nn.dropout(layer2, keep_prob=0.8)
            
            # 8 x 8 256 to 16x 16 x 128
            layer3 = tf.layers.conv2d_transpose(layer2, 128, 3, strides=2, padding='same')
            layer3 = tf.layers.batch_normalization(layer3, training=is_train)
            layer3 = tf.nn.relu(layer3)
            layer3 = tf.nn.dropout(layer3, keep_prob=0.8)
            
            # 16 x 16 x 128 to 32 x 32 x 64
            layer4 = tf.layers.conv2d_transpose(layer3, 64, 3, strides=2, padding='same')
            layer4 = tf.layers.batch_normalization(layer4, training=is_train)
            layer4 = tf.nn.relu(layer4)
            
            # 64 x 64 x 32
            layer5 = tf.layers.conv2d_transpose(layer4, 32, 3, strides=2, padding='same')
            layer5 = tf.layers.batch_normalization(layer5, training=is_train)
            layer5 = tf.nn.relu(layer5)
            
            # 128 x 128 x 16
            layer6 = tf.layers.conv2d_transpose(layer5, 16, 3, strides=2, padding='same')
            layer6 = tf.layers.batch_normalization(layer6, training=is_train)
            layer6 = tf.nn.relu(layer6)  
            
            #  256 x 256 x 3
            logits = tf.layers.conv2d_transpose(layer6, image_depth, 3, strides=2, padding='same')
            outputs = tf.tanh(logits)
            outputs = (outputs/2) + 0.5
            outputs = tf.clip_by_value(outputs, 0.0, 1.0)
            return outputs
    
    def get_discriminator(inputs_img, condition_label, reuse= tf.AUTO_REUSE, alpha=0.2):
        with tf.variable_scope("discriminator", reuse=reuse):
            # 256 x 256 x 3 to 128 x 128 x 16
            # 第一层不加入BN
            layer1 = tf.layers.conv2d(inputs_img, 16, 3, strides=2, padding='same')
            layer1 = tf.maximum(alpha * layer1, layer1)
            layer1 = tf.nn.dropout(layer1, keep_prob=0.8)
            
            # 128 x 128 x 16 to 64 x 64 x 32
            layer2 = tf.layers.conv2d(layer1, 32, 3, strides=2, padding='same')
            layer2 = tf.layers.batch_normalization(layer2, training=True)
            layer2 = tf.maximum(alpha * layer2, layer2)
            layer2 = tf.nn.dropout(layer2, keep_prob=0.8)
            
            # 32 x 32 x 64
            layer3 = tf.layers.conv2d(layer2, 64, 3, strides=2, padding='same')
            layer3 = tf.layers.batch_normalization(layer3, training=True)
            layer3 = tf.maximum(alpha * layer3, layer3)
            layer3 = tf.nn.dropout(layer3, keep_prob=0.8)
            
            # 16*16*128
            layer4 = tf.layers.conv2d(layer3, 128, 3, strides=2, padding='same')
            layer4 = tf.layers.batch_normalization(layer4, training=True)
            layer4 = tf.maximum(alpha * layer4, layer4)
            
            
             # 8*8*256
            layer5 = tf.layers.conv2d(layer4, 256, 3, strides=2, padding='same')
            layer5 = tf.layers.batch_normalization(layer5, training=True)
            layer5 = tf.maximum(alpha * layer5, layer5)
            
             # 4*4*512
            layer6 = tf.layers.conv2d(layer5, 512, 3, strides=2, padding='same')
            layer6 = tf.layers.batch_normalization(layer6, training=True)
            layer6 = tf.maximum(alpha * layer6, layer6)
            
        
            
            text_emb = tf.layers.dense(condition_label, 512)
            text_emb = tf.maximum(alpha * text_emb, text_emb)
            text_emb = tf.expand_dims(text_emb, 1)
            text_emb = tf.expand_dims(text_emb, 2)
            text_emb = tf.tile(text_emb, [1,4,4,1])
            
            layer_concat = tf.concat([layer6, text_emb], 3)
            
            layer7 = tf.layers.conv2d(layer_concat, 512, 1, strides=1, padding='same')
            layer7 = tf.layers.batch_normalization(layer7, training=True)
            layer7 = tf.maximum(alpha * layer7, layer7)
            
            flatten = tf.reshape(layer7, (-1, 4*4*512))
            logits = tf.layers.dense(flatten, 1)
            outputs = tf.sigmoid(logits)
            
            return logits, outputs
    
    def get_loss(inputs_image, wrong_image, inputs_noise, condition_label, image_depth, smooth=0.1):
        g_outputs = get_generator(inputs_noise, image_depth, condition_label, is_train=True)
        d_logits_real, d_outputs_real = get_discriminator(inputs_image, condition_label)
        d_logits_fake, d_outputs_fake = get_discriminator(g_outputs, condition_label, reuse=tf.AUTO_REUSE)
        d_logits_wrong, d_outputs_wrong = get_discriminator(wrong_image, condition_label, reuse=tf.AUTO_REUSE)
        
        print(inputs_image.get_shape(), condition_label.get_shape())
        
        # 计算Loss
        g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, 
                                                                        labels=tf.ones_like(d_outputs_fake)*(1-smooth)))
        
        #g_loss_l1 = tf.reduce_mean(tf.abs(g_outputs - inputs_image))
        
        #g_loss = g_loss_ + g_loss_l1
        
        d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,
                                                                             labels=tf.ones_like(d_outputs_real)*(1-smooth)))
        d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
                                                                             labels=tf.ones_like(d_outputs_fake)*smooth))
        d_loss_wrong = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_wrong,
                                                                             labels=tf.ones_like(d_outputs_wrong)*smooth))
        
        d_loss = d_loss_real + d_loss_fake + d_loss_wrong
        
        return g_loss, d_loss
    
    def get_optimizer(g_loss, d_loss, beta1=0.4, learning_rate=0.001):
        train_vars = tf.trainable_variables()
        
        g_vars = [var for var in train_vars if var.name.startswith("generator")]
        d_vars = [var for var in train_vars if var.name.startswith("discriminator")]
        
        # Optimizer
        with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
            g_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
            d_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        
        return g_opt, d_opt
    
    def plot_images(samples):
        #samples = (samples+1)/2
        fig, axes = plt.subplots(nrows=1, ncols=10, sharex=True, sharey=True, figsize=(20,2))
        for img, ax in zip(samples, axes):
            ax.imshow(img.reshape((256, 256, 3)))
            ax.get_xaxis().set_visible(False)
            ax.get_yaxis().set_visible(False)
        fig.tight_layout(pad=0)
    
    def show_generator_output(sess, n_images, inputs_noise, output_dim, test_text_vec):
    #    condition_text = tf.to_float(condition_text)
    #    last, b_size = sess.run(text_vec(condition_text, batch_size=n_images, reuse=tf.AUTO_REUSE))
        samples = sess.run(get_generator(inputs_noise, output_dim, test_text_vec, is_train=False))
        return samples
    
    # 定义参数
    n_samples = 10
    learning_rate = 0.0002
    beta1 = 0.5
    
    # 存储loss
    losses = []
    step = 0
    last = text_rnn(input_text)
    g_loss, d_loss = get_loss(real_image_batch, wrong_image_batch, inputs_noise, last, image_depth, smooth=0.1)
    g_train_opt, d_train_opt = get_optimizer(g_loss, d_loss, beta1, learning_rate)
    
    saver = tf.train.Saver()
    with tf.Session() as sess:
        #sess.run(tf.global_variables_initializer())
        model_file=tf.train.latest_checkpoint('../input/gan-text-to-image-102flowers-rieyuguanghua')
        saver.restore(sess, model_file)
        
        for epoch in range(791, 831):
            index = np.random.permutation(len(all_image_filename))
            data_text_emb = data_text_emb[index]
            all_image_filename = all_image_filename[index]
            wrong_image_filename = all_image_filename[np.random.permutation(len(all_image_filename))] 
            dataset_image = tf.data.Dataset.from_tensor_slices((all_image_filename, wrong_image_filename))
            dataset_image = dataset_image.map(_pre_func)
            dataset_image = dataset_image.repeat(1)
            dataset_image = dataset_image.batch(batch_size)
            
            dataset_image_op = iterator.make_initializer(dataset_image)
    
            sess.run(dataset_image_op)
            i = 0
            while True: 
            
                try:
                    batch_noise = np.random.uniform(-1, 1, size=(batch_size, noise_dim))
                    text_emb_batch = data_text_emb[i: i + batch_size]
                    i = i + batch_size
                    _ = sess.run([g_train_opt, d_train_opt], feed_dict={input_text: text_emb_batch,
                                                                inputs_noise: batch_noise})
    
    #               if step % 50 == 0:
    #                   saver.save(sess, "./model10.ckpt")
    #                   train_loss_d = d_loss.eval({input_text: text_emb_batch,
    #                                               inputs_noise: batch_noise})
    #                   train_loss_g = g_loss.eval({input_text: text_emb_batch,
    #                                               inputs_noise: batch_noise})
    #                   
    #                   losses.append((train_loss_d, train_loss_g))
    #                   print("Step {}....".format(step+1), 
    #                         "Discriminator Loss: {:.4f}....".format(train_loss_d),
    #                         "Generator Loss: {:.4f}....". format(train_loss_g))
                    
    
                        
                        # 显示图片
                    step += 1    
                #except tf.errors.OutOfRangeError as e:
                except:
    #                saver.save(sess, "./model10.ckpt")
                    print('epoch', epoch, 'step', step)
                    #print(e)
                    #try:
                    #    sess.run(real_image_batch)
                    #except Exception as e:
                    #    print(e)
                    break
        
            if epoch%10 == 0:
                #saver.save(sess, "./model10.ckpt")
                n_samples = 10
                condition_text = data_text_emb[:n_samples]
                test_noise = np.random.uniform(-1, 1, size=[n_samples, noise_dim])
                last_test = text_rnn(input_text, batch_size=n_samples, reuse=tf.AUTO_REUSE)
                test_text_vec = sess.run(last_test, feed_dict={input_text: condition_text})
                samples = show_generator_output(sess, n_samples, test_noise, 3, test_text_vec)
                plot_images(samples)
        saver.save(sess, "./model11.ckpt")
    

    在这里插入图片描述
    在这里插入图片描述

    tf.reset_default_graph()
    vec = []
    test_word = """
    the petals on this flower are yellow with a red center,the petals on this flower are yellow with a red center
    """
    all_vec = [word_vectors[w] for w in test_word if w in word_vectors]
    vec.append(all_vec)
    data = pd.Series(vec)
    data = data.apply(pad, maxlength=maxlength)
    data_ = np.concatenate(data).reshape(len(data),maxlength,100)
    test_text_vec = data_
    test_text_vec = test_text_vec.astype(np.float32)
    
    
    losses = []
    step = 0
    n_samples = 10
    test_noise = np.random.uniform(-1, 1, size=[n_samples, noise_dim])
    last_test = text_rnn(test_text_vec, batch_size=n_samples, reuse=tf.AUTO_REUSE)
    
    new_image = get_generator(test_noise, image_depth, last_test)
    
    
    saver = tf.train.Saver()
    with tf.Session() as sess:
        model_file=tf.train.latest_checkpoint('../input/gan-text-to-image-102flowers-rieyuguanghua')
        saver.restore(sess, model_file)
        samples = show_generator_output(sess, n_samples, test_noise, 3, last_test)
        plot_images(samples)
    

    在这里插入图片描述

  • 相关阅读:
    配置Tomcat 输入ip直接访问自己的页面
    为什么hashMap的容量是2的幂次
    LinkedList源码详解
    以太网和Zigbee的家居信息采集系统
    无线LED智能照明控制系统
    ZigBee无线应变采集装置
    ZigBee红外远程监控系统设计
    ZigBee教室照明监控系统设计
    基于物联网的智能医护系统研究
    物联网的低成本乳品质量链追溯平台设计
  • 原文地址:https://www.cnblogs.com/gemoumou/p/14186243.html
Copyright © 2011-2022 走看看