模型选择与调优
交叉验证:为了让被评估的模型更加准确可信
网格搜索
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import StandardScaler
import pandas as pd
def knncls():
# k-近邻预测用户签到位置
# 1,读取数据
data = pd.read_csv("train.csv")
# print(data.head(10))
#,2,处理数据
# 缩小数据,查询数据筛选
data = data.query("x > 1.0 & x <1.25 & y >2.5 & y < 2.75")
# 处理时间数据
time_value = pd.to_datetime(data["time"],unit="s")
# print(time_value)
# 把日期格式转换成字典格式
time_value = pd.DatetimeIndex(time_value)
# 3,构造一些特征
data["day"] = time_value.day
data["hour"] = time_value.hour
data["weekday"] = time_value.weekday
# 把时间戳特征删除
data = data.drop(["time"],axis=1) # sklearn中1表示列和pandas不一样
# print(data)
#把签到数量少于n个目标位置删除
place_count = data.groupby("place_id").count()
tf = place_count[place_count.row_id > 3].reset_index()
data = data[data["place_id"].isin(tf.place_id)]
data = data.drop(["row_id"],axis=1)
print(data)
# 取出数据当中的特征值和目标值
y = data["place_id"]
x = data.drop(["place_id"],axis=1)
# 进行数据的分割 训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25)
# 特征工程(标准化)
std = StandardScaler()
# 对测试集和训练集的特征值进行标准化
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# 进行算法流程 # 超参数
knn = KNeighborsClassifier()
# # fit,predict,score
# knn.fit(x_train,y_train)
# # 得出预测结果
# y_predict = knn.predict(x_test)
#
# print("预测的目标签到位置为:",y_predict)
#
# # 得出准确率
# print("预测的准确率:",knn.score(x_test,y_test))
# 进行网格搜索
# 构造一些参数的值进行搜索
param = {"n_neighbors":[3,5,10]}
gc = GridSearchCV(knn,param_grid=param,cv=10)
gc.fit(x_train,y_train)
# 预测准确率
gc.score(x_test,y_test)
print("在测试集上的准确率:",gc.score(x_test,y_test))
print("在交叉验证中最好的结果:",gc.best_score_)
print("最好的模型是:",gc.best_estimator_)
print("每个超参数每次交叉验证的结果:",gc.cv_results_)
return None
if __name__=="__main__":
knncls()