zoukankan      html  css  js  c++  java
  • Bandpass Signals(带通信号,或称窄带信号)

    带通信号

    一个实的带通信号$x(t)$可以表示为

    [x(t) = r(t)cos (2pi f_0 t + phi_x(t)) ]

    其中$r(t)$是幅度调制或包络,$phi_x(t)$是相位调制,$f_0$是载波频率,$r(t)$和$phi_x(t)$的变化比$f_0$要小得多。频率调制表示为

    [f_m(t) = frac{1}{2pi} frac{d}{dt}phi_x(t) ]

    瞬时频率

    [{f_i}(t) = frac{1}{{2pi }}frac{d}{{dt}}left( {2pi {f_0}t + {phi _x}(t)} ight) = {f_0} + {f_m}(t)]

    如果信号带宽B远小于中心频率$f_0$,则信号$x(t)$称为带通信号。

    带通信号也可以由两个互为正交的低通信号(的调制)来表示,即

    [x(t) = {x_I}(t)cos 2pi {f_0}t - {x_Q}(t)sin 2pi {f_0}t]

    其中

    [egin{array}{l}
    {x_I}(t) = r(t)cos {phi _x}(t)\
    {x_Q}(t) = r(t)sin{phi _x}(t)
    end{array}]

    解析信号(Analytic Signal)或预包络(Pre-Envelope)

    对于给定的实信号$x(t)$,其Hilbert变换为

    [hat x(t) = x(t)*frac{1}{{pi t}}]

    定义解析信号

    [psi (t) = x(t) + jhat x(t)]

    解析信号本质上是原信号的正频谱部分,是实信号的一种“简练”形式,常称为$x(t)$的预包络,因为$x(t)$的包络可以通过对$psi (t)$简单求模得到。

    带通信号的预包络与复包络

    带通信号$x(t)$的Hilbert变换为

    [hat x(t) = {x_I}(t)sin 2pi {f_0}t + {x_Q}(t)cos2pi {f_0}t]

    对应的解析信号为

    [psi (t) = x(t) + jhat x(t) = left[ {{x_I}(t) + j{x_Q}(t)} ight]{e^{j2pi {f_0}t}} = ilde x(t){e^{j2pi {f_0}t}}]

    信号$ ilde x(t) = {x_I}(t) + j{x_Q}(t) $是$x(t)$的复包络。因此,包络信号及其对应的相位为

    [egin{array}{l}
    a(t) = |{x_I}(t) + j{x_Q}(t)| = |psi (t)|\
    psi (t) = arg ( ilde x(t)) = angle ilde x(t)
    end{array}]

    因此,实带通信号$x(t)$、解析信号$phi(t)$及复包络$ ilde x(t)$之间的关系如下:

    [egin{array}{l}
    x(t) = r(t)cos (2pi {f_0}t + {phi _x}(t))\
    x(t) = {x_I}(t)cos 2pi {f_0}t - {x_Q}(t)sin 2pi {f_0}t\
    psi (t) = x(t) + jhat x(t) equiv ilde x(t){e^{j2pi {f_0}t}}\
    ilde x(t) = {x_I}(t) + j{x_Q}(t)
    end{array}]

  • 相关阅读:
    scss-变量分隔符
    scss-声明变量与引用
    scss-入门
    关于动画框架类注意的点点滴滴03
    关于动画框架类注意的点点滴滴02
    关于动画框架类注意的点点滴滴01
    简单的form表单
    简易自定义下拉菜单 与简易默认下拉html片段
    有边框的简易表格
    css模仿表格 居中
  • 原文地址:https://www.cnblogs.com/gemstone/p/3764468.html
Copyright © 2011-2022 走看看