zoukankan      html  css  js  c++  java
  • hdu 5901 Count primes 素数计数模板

    转自:http://blog.csdn.net/chaiwenjun000/article/details/52589457

    计从1到n的素数个数

    两个模板

    时间复杂度O(n^(3/4))

     1 #include <bits/stdc++.h>
     2 #define ll long long
     3 using namespace std;
     4 ll f[340000],g[340000],n;
     5 void init(){
     6     ll i,j,m;
     7     for(m=1;m*m<=n;++m)f[m]=n/m-1;
     8     for(i=1;i<=m;++i)g[i]=i-1;
     9     for(i=2;i<=m;++i){
    10         if(g[i]==g[i-1])continue;
    11         for(j=1;j<=min(m-1,n/i/i);++j){
    12             if(i*j<m)f[j]-=f[i*j]-g[i-1];
    13             else f[j]-=g[n/i/j]-g[i-1];
    14         }
    15         for(j=m;j>=i*i;--j)g[j]-=g[j/i]-g[i-1];
    16     }
    17 }
    18 int main(){
    19     while(scanf("%I64d",&n)!=EOF){
    20         init();
    21         cout<<f[1]<<endl;
    22     }
    23     return 0;
    24 }

    第二个 时间复杂度O(n^(2/3))

      1 //Meisell-Lehmer
      2 //G++ 218ms 43252k
      3 #include<cstdio>
      4 #include<cmath>
      5 using namespace std;
      6 #define LL long long
      7 const int N = 5e6 + 2;
      8 bool np[N];
      9 int prime[N], pi[N];
     10 int getprime()
     11 {
     12     int cnt = 0;
     13     np[0] = np[1] = true;
     14     pi[0] = pi[1] = 0;
     15     for(int i = 2; i < N; ++i)
     16     {
     17         if(!np[i]) prime[++cnt] = i;
     18         pi[i] = cnt;
     19         for(int j = 1; j <= cnt && i * prime[j] < N; ++j)
     20         {
     21             np[i * prime[j]] = true;
     22             if(i % prime[j] == 0)   break;
     23         }
     24     }
     25     return cnt;
     26 }
     27 const int M = 7;
     28 const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;
     29 int phi[PM + 1][M + 1], sz[M + 1];
     30 void init()
     31 {
     32     getprime();
     33     sz[0] = 1;
     34     for(int i = 0; i <= PM; ++i)  phi[i][0] = i;
     35     for(int i = 1; i <= M; ++i)
     36     {
     37         sz[i] = prime[i] * sz[i - 1];
     38         for(int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
     39     }
     40 }
     41 int sqrt2(LL x)
     42 {
     43     LL r = (LL)sqrt(x - 0.1);
     44     while(r * r <= x)   ++r;
     45     return int(r - 1);
     46 }
     47 int sqrt3(LL x)
     48 {
     49     LL r = (LL)cbrt(x - 0.1);
     50     while(r * r * r <= x)   ++r;
     51     return int(r - 1);
     52 }
     53 LL getphi(LL x, int s)
     54 {
     55     if(s == 0)  return x;
     56     if(s <= M)  return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
     57     if(x <= prime[s]*prime[s])   return pi[x] - s + 1;
     58     if(x <= prime[s]*prime[s]*prime[s] && x < N)
     59     {
     60         int s2x = pi[sqrt2(x)];
     61         LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
     62         for(int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]];
     63         return ans;
     64     }
     65     return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
     66 }
     67 LL getpi(LL x)
     68 {
     69     if(x < N)   return pi[x];
     70     LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
     71     for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1;
     72     return ans;
     73 }
     74 LL lehmer_pi(LL x)
     75 {
     76     if(x < N)   return pi[x];
     77     int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
     78     int b = (int)lehmer_pi(sqrt2(x));
     79     int c = (int)lehmer_pi(sqrt3(x));
     80     LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2;
     81     for (int i = a + 1; i <= b; i++)
     82     {
     83         LL w = x / prime[i];
     84         sum -= lehmer_pi(w);
     85         if (i > c) continue;
     86         LL lim = lehmer_pi(sqrt2(w));
     87         for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1);
     88     }
     89     return sum;
     90 }
     91 int main()
     92 {
     93     init();
     94     LL n;
     95     while(~scanf("%lld",&n))
     96     {
     97         printf("%lld
    ",lehmer_pi(n));
     98     }
     99     return 0;
    100 }
  • 相关阅读:
    js产生随机数
    Ajax库的编写及使用
    css水平竖直居中方式
    各大网站css初始化代码【转】
    文档对象模型-DOM(二)
    文档对象模型-DOM(一)
    nav标签使用说明
    html5学习整理-0311
    Python OpenCV —— Arithmetic
    关于python3 OpenCV的安装和配置
  • 原文地址:https://www.cnblogs.com/general10/p/6044156.html
Copyright © 2011-2022 走看看