zoukankan      html  css  js  c++  java
  • [bzoj2594][Wc2006]水管局长数据加强版——lct+离线

    Brief Description

    您有一个无向带权图,您需要支持两种操作。

    1. 询问两个点之间的最大权最小路径。
    2. 删除一条边。

    Algorithm Design

    我们首先提出一个猜想:最优路径一定在原图的一个最小生成森林上,证明如下:
    假设最优路径有(phi)条边不再最小生成森林上,我们考察其中的一条边,根据定义,生成森林中一定有一条路径链接这条边的顶点且权值和小于这条边,那么我们如果使用这条路径代替这条边,(phi)会减小而最大权不会增加,所以根据反证法我们就可以知道这个结论的正确性。
    有了这个引理之后我们可以把原题转化为维护一个最小生成森林,这显然可以使用lct维护。
    考虑细节。因为lct不是太支持删一条边,所以我们离线地倒过来做。
    另外我们需要记录每条边是否被删。我开始使用了map,然而不知道为什么一直RE。后来改用二分查找就好了。所以——

    抵制STL从我做起!(逃#

    Code

    #include <algorithm>
    #include <cctype>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    const int maxv = 1500005;
    int read() {
      int x = 0, f = 1;
      char ch = getchar();
      while (!isdigit(ch)) {
        if (ch == '-')
          f = -1;
        ch = getchar();
      }
      while (isdigit(ch)) {
        x = x * 10 + ch - '0';
        ch = getchar();
      }
      return x * f;
    }
    struct data {
      int from, to, dat, br, id;
      data(int x = 0, int y = 0, int z = 0, int i = 0, int j = 0)
          : from(x), to(y), dat(z), br(i), id(j) {}
      bool operator<(const data b) const {
        return this->from < b.from || ((this->from == b.from) && (this->to < b.to));
      }
    } a[1000005];
    struct req {
      int opt, x, y, id, ans;
      req(int x = 0, int y = 0, int z = 0, int k = 0, int fuck = 0) {
        this->opt = x;
        this->x = y;
        this->y = z;
        this->id = k;
        this->ans = fuck;
      }
    } q[100005];
    bool cmp(data a, data b) { return a.dat < b.dat; }
    bool cmp2(data a, data b) { return a.id < b.id; }
    int n, m, qaq, f[maxv], max[maxv], val[maxv], tot, maxnum[maxv];
    int fa[maxv], ch[maxv][2];
    bool rev[maxv];
    int bisearch(int u, int v) {
      int l = 1, r = m;
      while (l <= r) {
        int mid = (l + r) >> 1;
        if (a[mid].from < u || (a[mid].from == u && a[mid].to < v))
          l = mid + 1;
        else if (a[mid].from == u && a[mid].to == v)
          return mid;
        else
          r = mid - 1;
      }
      return -1;
    }
    bool isroot(int x) { return ch[fa[x]][0] != x && ch[fa[x]][1] != x; }
    void pushdown(int k) {
      if (rev[k]) {
        rev[k] ^= 1;
        rev[ch[k][0]] ^= 1;
        rev[ch[k][1]] ^= 1;
        std::swap(ch[k][0], ch[k][1]);
      }
    }
    void update(int x) {
      maxnum[x] = x;
      int l = maxnum[ch[x][0]], r = maxnum[ch[x][1]];
      if (val[l] > val[maxnum[x]])
        maxnum[x] = l;
      if (val[r] > val[maxnum[x]])
        maxnum[x] = r;
      max[x] = val[maxnum[x]];
    }
    void zig(int x) {
      int y = fa[x], z = fa[y], l = (ch[y][1] == x), r = l ^ 1;
      if (!isroot(y))
        ch[z][ch[z][1] == y] = x;
      fa[ch[y][l] = ch[x][r]] = y;
      fa[ch[x][r] = y] = x;
      fa[x] = z;
      update(y);
      update(x);
    }
    void splay(int x) {
      int s[maxv], top = 0;
      s[++top] = x;
      for (int i = x; !isroot(i); i = fa[i])
        s[++top] = fa[i];
      while (top)
        pushdown(s[top--]);
      for (int y; !isroot(x); zig(x)) {
        if (!isroot(y = fa[x])) {
          zig((ch[fa[y]][0] == y) == (ch[y][0] == x) ? y : x);
        }
      }
      update(x);
    }
    void access(int x) {
      for (int t = 0; x; t = x, x = fa[x]) {
        splay(x);
        ch[x][1] = t;
        update(x);
      }
    }
    void makeroot(int x) {
      access(x);
      splay(x);
      rev[x] ^= 1;
    }
    void split(int x, int y) {
      makeroot(y);
      access(x);
      splay(x);
    }
    void link(int x, int y) {
      makeroot(x);
      fa[x] = y;
    }
    void cut(int x, int y) {
      makeroot(x);
      access(y);
      splay(y);
      ch[y][0] = fa[x] = 0;
    }
    void init() {
      memset(val, 0, sizeof(val));
      n = read();
      m = read();
      qaq = read();
      for (int i = 1; i <= n; i++)
        f[i] = i;
      for (int i = 1; i <= m; i++) {
        int x = read(), y = read(), z = read();
        if (x > y)
          std::swap(x, y);
        a[i] = data(x, y, z);
      }
      std::sort(a + 1, a + 1 + m, cmp);
      for (int i = 1; i <= m; i++) {
        a[i].id = i;
        val[n + i] = a[i].dat;
        maxnum[n + i] = n + i;
      }
      std::sort(a + 1, a + 1 + m);
      for (int i = 1; i <= qaq; i++) {
        int x = read(), y = read(), z = read();
        q[i] = req(x, y, z);
        if (x == 2) {
          if (q[i].x > q[i].y)
            std::swap(q[i].x, q[i].y);
          int t = bisearch(q[i].x, q[i].y);
          a[t].br = 1;
          q[i].id = a[t].id;
        }
      }
    }
    int find(int x) { return f[x] == x ? x : f[x] = find(f[x]); }
    void kruskal() {
      std::sort(a + 1, a + m + 1, cmp2);
      tot = 0;
      for (int i = 1; i <= m; i++) {
        if (!a[i].br) {
          int u = a[i].from, v = a[i].to, x = find(u), y = find(v);
          if (x != y) {
            f[x] = y;
            link(u, i + n);
            link(v, i + n);
            tot++;
            if (tot == n - 1)
              break;
          }
        }
      }
    }
    void solve() {
      for (int i = qaq; i >= 1; i--) {
        int op = q[i].opt, x = q[i].x, y = q[i].y;
        if (op == 1) {
          split(x, y);
          q[i].ans = val[maxnum[x]];
        }
        if (op == 2) {
          int k = q[i].id;
          split(x, y);
          int t = maxnum[x];
          if (a[k].dat < val[t]) {
            cut(a[t - n].from, t);
            cut(a[t - n].to, t);
            link(x, k + n);
            link(y, k + n);
          }
        }
      }
      for (int i = 1; i <= qaq; i++) {
        if (q[i].opt == 1)
          printf("%d
    ", q[i].ans);
      }
    }
    int main() {
    #ifndef ONLINE_JUDGE
      freopen("input", "r", stdin);
    #endif
      init();
      kruskal();
      solve();
      return 0;
    }
    
  • 相关阅读:
    sql server 跨IP库更新表字段(OPENDATASOURCE 、update)
    sql server 开启一个事务
    ARMv8 汇编指令集查询
    开源操作系统项目
    Cmake使用教程交叉编译
    开源机器人项目
    网络通信协议之粘包问题
    开源图像处理计算机视觉
    开源机器学习项目
    C语言中的回调函数
  • 原文地址:https://www.cnblogs.com/gengchen/p/6529491.html
Copyright © 2011-2022 走看看