Brief Description
給定一棵樹, 判斷是否可以將其分成(frac{n}{k})個聯通塊, 其中每個聯通塊的大小均爲k.
Algorithm Design
我們有一個結論: k可行iff存在(frac{n}{k})個點, 以這些點爲根的子樹大小爲k或k的倍數.
讀者可以自行yy一下證明.
有了這個結論之後, 我們可以算出每個size, 用一個桶統計一下就好了.
Code
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstring>
const int maxn = 1200000;
int fa[maxn], n, divide[maxn], size[maxn], f[maxn], tot = 0;
void fuck(int n) {
int i;
for (i = 1; i * i < n; i++) {
if (n % i == 0) {
divide[tot++] = i;
divide[tot++] = n / i;
}
}
if (i * i == n)
divide[tot++] = i;
std::sort(divide, divide + tot);
}
int main() {
// freopen("sdoi12_divide.in", "r", stdin);
// freopen("sdoi12_divide.out", "w", stdout);
scanf("%d", &n);
char ch = getchar();
int cnt = 0;
while (cnt < (n - 1)) {
int x = 0;
while (!isdigit(ch))
ch = getchar();
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
cnt++;
fa[cnt + 1] = x;
}
fuck(n);
for (int T = 1; T <= 10; T++) {
printf("Case #%d:
", T);
memset(size, 0, sizeof(size));
memset(f, 0, sizeof(f));
for (int i = 2; i <= n; i++) {
if (T != 1) {
fa[i] = (fa[i] + 19940105) % (i - 1) + 1;
}
}
for (int i = n; i; i--)
size[fa[i]] += ++size[i];
for (int i = 1; i <= n; i++)
f[size[i]]++;
for (int i = 0; i < tot; i++) {
int tmp = 0;
for (int j = divide[i]; j <= n; j += divide[i])
tmp += f[j];
if (tmp == n / divide[i]) {
printf("%d
", divide[i]);
}
}
}
}