hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。
hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。
Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。
hive是十分适合数据仓库的统计分析和Windows注册表文件。
可以将SQL语句转换为MapReduce任务运行,通过自己的SQL查询分析需要的内容,这套SQL简称Hive SQL。
hive不适合用于联机(online)事务处理,也不提供实时查询功能。它最适合应用在基于大量不可变数据的批处理作业。hive的特点包括:可伸缩(在Hadoop的集群上动态添加设备)、可扩展、容错、输入格式的松散耦合。
hive 是一种底层封装了Hadoop 的数据仓库处理工具,使用类SQL 的hiveQL 语言实现数据查询,所有hive 的数据都存储在Hadoop 兼容的文件系统(例如,Amazon S3、HDFS)中。hive 在加载数据过程中不会对数据进行任何的修改,只是将数据移动到HDFS 中hive 设定的目录下,因此,hive 不支持对数据的改写和添加,所有的数据都是在加载的时候确定的。hive 的设计特点如下。
● 支持创建索引,优化数据查询。
● 不同的存储类型,例如,纯文本文件、HBase 中的文件。
● 将元数据保存在关系数据库中,大大减少了在查询过程中执行语义检查的时间。
● 可以直接使用存储在Hadoop 文件系统中的数据。
● 内置大量用户函数UDF 来操作时间、字符串和其他的数据挖掘工具,支持用户扩展UDF 函数来完成内置函数无法实现的操作。
● 类SQL 的查询方式,将SQL 查询转换为MapReduce 的job 在Hadoop集群上执行。