zoukankan      html  css  js  c++  java
  • P6268 [SHOI2002]舞会

    题目描述

    Link

    某学校要召开一个舞会。已知学校所有 (n) 名学生中,有些学生曾经互相跳过舞。当然跳过舞的学生一定是一个男生和一个女生。在这个舞会上,要求被邀请的学生中的任何一对男生和女生互相都不能跳过舞。求这个舞会最多能邀请多少个学生参加。


    首先呢,这道题是一道典型的二分图最大独立集问题。

    我们把每对跳过舞的同学连一条边,那么我们所选出来的同学中就不能有连边。

    这正好符合二分图最大独立集的概念,包含点数最多的,且任意两点之间没有连边的最大集。

    我们先证明一下,为什么我们这样建边会得到一张二分图。

    我们可以把男女分在左右两边,题目保证了跳过舞的人都是男女配对的,所以男男之间不会有连边。

    所以保证了同一个集合内没有连边,所以这是一个二分图。

    再说了,要是有奇环的话,那么就会有一个人的性别不明确(不男不女???) 大雾。

    自己画一下图就好理解了。

    那么我们最终的答案就是二分图的最大独立集。

    这东西怎么求呢? 先来一个定理:

    二分图最大独立集等于 n - 最小点覆盖 等于 n - 二分图最大匹配数。

    第一个等式的话很好证出来。

    我们选出来的点之间没有连边就等价于用最小的点覆盖所有的边,也就是我们所说的最小点覆盖问题。

    至于为什么最小点覆盖等于最大匹配数,先记住一下吧,自己以后会把这个坑补上的。

    当我们建完图后,你还会发现一个重要的问题就是,你找不到从从哪些点开始匹配,即找不到左边集合中的点。

    我一般解决这个问题的方法就是先对整张图跑一边染色法,把所有标记为 (1) 的点扔到一个 (vector) 中,然后对这些点跑一边最大匹配就可以。

    Code

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<vector>
    using namespace std;
    const int N = 1010;
    int n,m,u,v,ans,tot;
    int head[N],match[N],c[N];
    bool vis[N];
    vector<int> q;
    struct node
    {
    	int to,net;
    }e[100010];
    inline int read()
    {
    	int s = 0,w = 1; char ch = getchar();
    	while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
    	while(ch >= '0' && ch <= '9'){s = s * 10 + ch - '0'; ch = getchar();}
    	return s * w;
    }
    void add(int x,int y)
    {
    	e[++tot].to = y;
    	e[tot].net = head[x];
    	head[x] = tot;
    }
    bool dfs(int x)
    {
    	for(int i = head[x]; i; i = e[i].net)
    	{
    		int to = e[i].to;
    		if(!vis[to])
    		{
    			vis[to] = 1;
    			if(!match[to] || dfs(match[to]))
    			{
    				match[to] = x;
    				return 1;
    			}
    		}
    	}
    	return 0;
    }
    void bfs(int x,int col)
    {
    	c[x] = col;
    	if(c[x] == 1) q.push_back(x);
    	for(int i = head[x]; i; i = e[i].net)
    	{
    		int to = e[i].to;
    		if(!c[to]) bfs(to,3-col);
    	}
    }
    int main()
    {
    	n = read(); m = read();
    	for(int i = 1; i <= m; i++)
    	{
    		u = read()+1; v = read()+1;//记得学生编号是从零开始的,要加一个1转化为从1到n
    		add(u,v); add(v,u);
    	}
    	for(int i = 1; i <= n; i++)
    	{
    		if(!c[i]) bfs(i,1);//染色
    	}
    	for(int i = 0; i < q.size(); i++)//匈牙利算法
    	{
    		memset(vis,0,sizeof(vis));
    		int x = q[i];
    		if(dfs(x)) ans++;
    	}
    	printf("%d
    ",n-ans);
    	return 0;
    }
    
  • 相关阅读:
    递归函数
    python学习笔记
    套接字学习笔记
    Tomcat学习笔记3
    Tomcat学习笔记2
    《Python学习手册 第五版》 -第29章 类代码编写细节
    《Python学习手册 第五版》 -第28章 一个更加实际的示例
    《Python学习手册 第五版》 -第27章 类代码编写基础
    《Python学习手册 第五版》 -第26章 OOP:宏伟蓝图
    《Python学习手册 第五版》 -第25章 高级模块话题
  • 原文地址:https://www.cnblogs.com/genshy/p/13733566.html
Copyright © 2011-2022 走看看