期望得分: (100+70+30 = 200)
实际得分:(70+0+0 = 70)
(md) 今天挂了好多分,难受。
(T1) 打了个 (set) 的假做法,常数巨大,被卡成了 (70) 分。
(T2) 神 (tm) (Hash) 是关键字,(70) 分直接被干没了。
(T3) (ynoi) 的题,打了 (30) 分的暴力,但没开 ( unsigned long long) 直接炸了。
T1 发微博
题意描述
刚开通的 SH 微博共有 (n) 个用户((1sim n) 标号),在这短短一个月的时间内,用户们活动频繁,共有 (m) 条按时间顺序的记录:
! x 表示用户 x 发了一条微博;
+ x y 表示用户 x 和用户 y 成为了好友
− x y 表示用户 x 和用户 y 解除了好友关系
当一个用户发微博的时候,所有他的好友(直接关系)都会看到他的消息。
假设最开始所有人之间都不是好友关系,记录也都是合法的(即 + x y
时 (x) 和 (y) 一定不是好友,而 − x y
时 (x) 和 (y) 一定是好友)。
问这 (m) 条记录发生之后,每个用户分别看到了多少条消息
数据范围:(nleq 2 imes 10^5,mleq 10^6)
solution
可以直接拿 (set) 正着做,下面有一个比较好写的做法。
考虑如果一条关系 (x,y) 出现的时间为 (l,r) 那么 (x) 答案就要累加上 (y) 在这一段时间内发布的微博数。
正着维护前缀和的话,空间开不下。
考虑倒着做,维护一个 (sum[x]) 数组,表示从 (i-n) 这一段时间内 (x) 发送的微博数。
如果 (x,y) 在这一刻成为了好友,就让 ans[x] += sum[y],ans[y]+= sum[x]
反之解除好友就把 ans[x]-=sum[y],ans[y]-=sum[x]
然后这道题就做完了。复杂度 (O(n))
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<map>
#include<set>
using namespace std;
#define mp make_pair
const int N = 5e5+10;
int n,m,x,y,tot,w[N],sum[N];
struct node
{
int opt,x,y;
}q[N];
inline int read()
{
int s = 0,w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s = s * 10 + ch - '0'; ch = getchar();}
return s * w;
}
int main()
{
n = read(); m = read();
for(int i = 1; i <= m; i++)
{
char ch; cin>>ch;
if(ch == '!')
{
q[i].x = read();
q[i].opt = 1;
}
if(ch == '+')
{
q[i].x = read();
q[i].y = read();
q[i].opt = 2;
}
if(ch == '-')
{
q[i].x = read();
q[i].y = read();
q[i].opt = 3;
}
}
for(int i = m; i >= 1; i--)
{
if(q[i].opt == 1) sum[q[i].x]++;
else if(q[i].opt == 2) w[q[i].x] += sum[q[i].y], w[q[i].y] += sum[q[i].x];
else if(q[i].opt == 3) w[q[i].x] -= sum[q[i].y], w[q[i].y] -= sum[q[i].x];
}
for(int i = 1; i <= n; i++) printf("%d ",w[i]);
printf("
");
fclose(stdin); fclose(stdout);
return 0;
}
T2 字符串
题意描述
(ysy) 不想让家长看自己的聊天记录,所以 (ysy) 就想出了一套密码以及一种加密方式。
加密方式:现在给出一段英文,我们把每一个单词翻转,并将其所有的大写字母都变为小写字母,最后在把这些单词收尾相接得到一个字符串,这样我们就加密完了。举个例子 (ab Aes Ksd):加密后变为 (baseadsk)。
坐在电脑屏幕另一侧的你对于 (ysy) 这样的行为十分恼怒,因为看不懂,但是好在 (ysy) 给你了他所有可能说的单词,现在你需要运用编程能力将 (ysy) 说的话解密。
数据范围:字符串长度 (nleq 10000), 单词个数 (mleq 5000), 所有单词长度 (lenleq 1000)。
solution
首先有 (70) 分的 (O(n^2)) 做法,就是设 (f[i]) 表示前 (i) 个字符能否拼接成。
转移时枚举每个单词,如果 (s(j+1,i)) 和单词相同,则 (f[i] |= f[j]) 。
同时记录一下决策点,来输出方案。
判断两个字符串是否相同,用 (Hash) 来判断即可。
其实我们是没必要枚举每个单词的,因为单词的长度是小于 (1000) 的,所以我们只需要枚举 (s(1,i)) 长度小于 (1000) 的后缀即可。
众所周知 map[x]
非常慢,所以建议使用 map.find(x)
复杂度: (O(n1000logm))。
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<map>
using namespace std;
#define ull unsigned long long
const int N = 1e5+10;
const int base = 23333;
const int p = 998244353;
int n,m,cnt;
int pos[N],f[N],pre[N],len[N];
ull has[N];
char s[N],b[100010][1010];
map<ull,int> id;
int main()
{
freopen("char.in","r",stdin);
freopen("char.out","w",stdout);
scanf("%d",&n); scanf("%s",s+1);
scanf("%d",&m);
for(int i = 1; i <= m; i++)
{
scanf("%s",b[i]+1);
int k = strlen(b[i]+1);
ull tmp = 0;
for(int j = k; j >= 1; j--)
{
if(b[i][j] < 'a') tmp = tmp * base + b[i][j] - 'A' + 'a';
else tmp = tmp * base + b[i][j];
}
if(id.find(tmp) == id.end()) id[tmp] = i;
len[i] = k;
}
f[0] = 1;
for(int i = 1; i <= n; i++)
{
ull tmp = 0, mi = 1;
for(int j = i; j >= 1 && i-j+1 <= 1000; j--)
{
tmp = tmp + s[j] * mi; mi = mi * base;
if(f[i]) break;
if(id.find(tmp) != id.end() && f[j-1] == 1)
{
f[i] = 1;
pre[i] = id[tmp];
break;
}
}
}
while(n)
{
pos[++cnt] = pre[n];
n = n-len[pre[n]];
}
for(int i = cnt; i >= 1; i--) printf("%s ",b[pos[i]]+1);
printf("
");
fclose(stdin); fclose(stdout);
return 0;
}
T3 序列/由乃的OJ
题意描述
给你一个有 (n)个点的树,每个点的包括一个位运算 (opt) 和一个权值 (x),位运算有 &
,|
,^
三种,分别用 $1,2,3$1, 表示。
每次询问包含三个整数 (x,y,z),初始选定一个数 (v)。然后 (v) 依次经过从 (x) 到 (y) 的所有节点,每经过一个点 (i) (v) 就变成 (v opt_i x_i) ,所以他想问你,最后到 (y) 时,希望得到的值尽可能大,求最大值。给定的初始值 (v) 必须是在 ([0,z])[之间。
每次修改包含三个整数 (x,y,z) ,意思是把 (x) 点的操作修改为 (y),数值改为 (z)。
数据范围: (n,mleq 10^5, 0leq kleq 64)
solution
这个其实是起床困难综合征的树上版本。
不难想到用线段树来维护。
考虑对线段树上的每一个区间维护 (4) 个值 (l_0,l_1,r_0,r_1) 分别表示,每一位全为 (0 /1) 的数,从左/右依次进行运算得到的结果。
咕咕咕。