zoukankan      html  css  js  c++  java
  • PyTorch简明教程 | 3-迁移学习实例

    from __future__ import print_function, division
    
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torch.optim import lr_scheduler
    import numpy as np
    import torchvision
    from torchvision import datasets, models, transforms
    import matplotlib.pyplot as plt
    import time
    import os
    import copy
    
    plt.ion()
    
    
    #1- 加载数据和预处理
    # 训练的时候会做数据增强和归一化
    # 而验证的时候只做归一化
    
    data_transforms = {
        'train': transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
            ]),
        'val': transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ]),
    
    }
    
    data_dir = '../data/'
    image_dataset = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) 
                    for x in ['train', 'val']}
    dataloaders = {x: torch.utils.data.DataLoader(image_dataset[x], batch_size=4,
                    shuffle=True, num_workers=4)
                    for x in ['train', 'val']}
    data_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
    class_names = image_datasets['train'].classes
    
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    
    #2- 可视化图片
    def imshow(inp, title=None):
        inp = inp.numpy().transpose((1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        inp = std * inp + mean
        inp = np.clip(inp, 0, 1)
        plt.imshow(inp)
        if title is not None:
            plt.title(title)
        plt.pause(0.001)
    
    
    # 得到一个batch的数据
    inputs, classes = next(iter(dataloaders['train']))
    
    # 把batch张图片拼接成一个大图
    out = torchvision.utils.make_grid(inputs)
    
    imshow(out, title=[class_names[x] for x in classes])
    
    #3- 训练模型
    #完成learning rate的自适应 和 保存最好的模型
    def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
        since = time.time()
        
        best_model_wts = copy.deepcopy(model.state_dict())
        best_acc = 0.0
        
        for epoch in range(num_epochs):
            print('Epoch {}/{}'.format(epoch, num_epochs - 1))
            print('-' * 10)
            
            # 每个epoch都分为训练和验证阶段
            for phase in ['train', 'val']:
                if phase == 'train':
                    scheduler.step()
                    model.train()  # 训练阶段
                else:
                    model.eval()   # 验证阶段
                
                running_loss = 0.0
                running_corrects = 0
                
                # 变量数据集
                for inputs, labels in dataloaders[phase]:
                    inputs = inputs.to(device)
                    labels = labels.to(device)
                
                # 参数梯度清空
                optimizer.zero_grad()
                
                # forward
                # 只有训练的时候track用于梯度计算的历史信息。
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)
                    
                    # 如果是训练,那么需要backward和更新参数 
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()
                
                # 统计
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)
                
                epoch_loss = running_loss / dataset_sizes[phase]
                epoch_acc = running_corrects.double() / dataset_sizes[phase]
                
                print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                    phase, epoch_loss, epoch_acc))
                
                # 保存验证集上的最佳模型
                if phase == 'val' and epoch_acc > best_acc:
                    best_acc = epoch_acc
                    best_model_wts = copy.deepcopy(model.state_dict())
                
                print()
        
        time_elapsed = time.time() - since
        print('Training complete in {:.0f}m {:.0f}s'.format(
            time_elapsed // 60, time_elapsed % 60))
        print('Best val Acc: {:4f}'.format(best_acc))
        
        # 加载最优模型
        model.load_state_dict(best_model_wts)
        return model
    
    
    #4- 可视化结果
    
    def visualize_model(model, num_images=6):
        was_training = model.training
        model.eval()
        images_so_far = 0
        fig = plt.figure()
        
        with torch.no_grad():
            for i, (inputs, labels) in enumerate(dataloaders['val']):
                inputs = inputs.to(device)
                labels = labels.to(device)
                
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                
                for j in range(inputs.size()[0]):
                    images_so_far += 1
                    ax = plt.subplot(num_images//2, 2, images_so_far)
                    ax.axis('off')
                    ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                    imshow(inputs.cpu().data[j])
                    
                    if images_so_far == num_images:
                        model.train(mode=was_training)
                        return
            model.train(mode=was_training)
    
    #5- fine-tuning 所有参数
    #因为类别不一样需要删掉原来的全连接层,换成新的全连接层。这里我们让所有的模型参数都可以调整,包括新加的全连接层和预训练的层。
    model_ft = models.resnet18(pretrained=True)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, 2)
    
    model_ft = model_ft.to(device)
    
    criterion = nn.CrossEntropyLoss()
    
    # 所有的参数都可以训练
    optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
    
    # 每7个epoch learning rate变为原来的10% 
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
    
    model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
        num_epochs=25)
    
    #6- fine-tuning最后一层参数
    #可以固定住前面层的参数,只训练最后一层,时间快一倍
    model_conv = torchvision.models.resnet18(pretrained=True)
    for param in model_conv.parameters():
        param.requires_grad = False
    
    # 新加的层默认requires_grad=True 
    num_ftrs = model_conv.fc.in_features
    model_conv.fc = nn.Linear(num_ftrs, 2)
    
    model_conv = model_conv.to(device)
    
    criterion = nn.CrossEntropyLoss()
    
    # 值训练最后一个全连接层。
    optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
    
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
    
    model_conv = train_model(model_conv, criterion, optimizer_conv,
        exp_lr_scheduler, num_epochs=25)
  • 相关阅读:
    css 旋转
    html 旋转
    链表和数组的区别
    hashmap
    【java开发系列】—— 自定义注解
    java不确定参数个数方法例子
    mysql 删除
    linux下常用命令
    php的几种算法(转载)
    数据容器
  • 原文地址:https://www.cnblogs.com/geo-will/p/13546666.html
Copyright © 2011-2022 走看看