zoukankan      html  css  js  c++  java
  • Largest Rectangle in a Histogram

    2107: Largest Rectangle in a Histogram

    Time Limit: 1 Sec  Memory Limit: 64 MB
    Submit: 777  Solved: 220

    Description

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

    Input

    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

    Output

    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

    Sample Input

    7 2 1 4 5 1 3 3
    4 1000 1000 1000 1000
    0
    

    Sample Output

    8
    4000
    

    HINT

    Huge input, scanf is recommended.

    如果确定了长方形的左端点L和右端点R,那么最大可能的高度就是min{hi|L <= i < R}。

    L[i] = (j <= i并且h[j-1] < h[i]的最大的j)

    R[i] = (j > i并且h[j] > h[i]的最小的j)

     1 #include <stdio.h>
     2 #define MAX_N 100000
     3 
     4 int n;
     5 int h[MAX_N];
     6 int L[MAX_N], R[MAX_N];
     7 int stack[MAX_N];
     8 
     9 long long max(long long a, long long b)
    10 {
    11     return (a > b) ? a : b;
    12 }
    13 
    14 void solve()
    15 {
    16     //计算L
    17     long long ans = 0;
    18     int t = 0;
    19     int i;
    20     for (i = 0; i < n; ++i)
    21     {
    22         while (t > 0 && h[stack[t-1]] >= h[i])
    23             t--;
    24         L[i] = (t == 0) ? 0 : (stack[t-1] + 1);
    25         stack[t++] = i;
    26     }
    27 
    28     //计算R
    29     t = 0;
    30     for (i = n - 1; i >= 0; --i)
    31     {
    32         while (t > 0 && h[stack[t-1]] >= h[i])
    33             t--;
    34         R[i] = (t == 0) ? n : stack[t-1];
    35         stack[t++] = i;
    36     }
    37 
    38     for (i = 0; i < n; ++i)
    39     {
    40         ans=max ( ans, ( long long)h[i]*( R[i]- L[i]));
    41     }
    42     printf("%lld
    ", ans);
    43 }
    44 
    45 int main(void){
    46    // freopen("a.txt","r",stdin);
    47     int i;
    48     while (scanf("%d", &n) != EOF && n != 0)
    49     {
    50         for (i = 0; i < n; ++i)
    51             scanf("%d", &h[i]);
    52         solve();
    53     }
    54 
    55     return 0;
    56 }
    View Code

     Acknowledge:jdplus     http://blog.csdn.net/jdplus/article/details/20606673      

  • 相关阅读:
    NSInvalidArgumentException', reason: '[__NSCFDictionary setObject:forKey:]: attempt to insert nil value (key: WebKitLocalStorageDatabasePathPreferenc
    Mac下Android开发环境的搭建
    Xcode 4.4 的新特性 | LLVM 4.0 的新语法
    UIButton设置 textAlignment 属性的方法
    ipa包中图片进行了Compress之后的主要处理和作用
    苹果开发者证书的申请流程 Apple ID for IDP..
    systemtap perf 火焰图
    pg_blocking pg_monitor (转) postgresql表死锁问题的排查方式 阻塞分析 慢SQL
    知识广度 vs 知识深度
    火焰图入门
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4191149.html
Copyright © 2011-2022 走看看