zoukankan      html  css  js  c++  java
  • Goldbach's Conjecture

                         Goldbach's Conjecture
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
    Submit Status

    Description

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture: 
    Every even number greater than 4 can be 
    written as the sum of two odd prime numbers.

    For example: 
    8 = 3 + 5. Both 3 and 5 are odd prime numbers. 
    20 = 3 + 17 = 7 + 13. 
    42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

    Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.) 
    Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million. 

    Input

    The input will contain one or more test cases. 
    Each test case consists of one even integer n with 6 <= n < 1000000. 
    Input will be terminated by a value of 0 for n.

    Output

    For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

    Sample Input

    8
    20
    42
    0
    

    Sample Output

    8 = 3 + 5
    20 = 3 + 17
    42 = 5 + 37
     1 #include<iostream>
     2 #include<cstdlib>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<algorithm>
     6 #include<cmath>
     7 using namespace std;
     8 bool isprime ( int k )
     9 {
    10     int t = sqrt ( k + 0.5 ) ;
    11     for ( int i = 2  ; i <= t ; i ++ )
    12         if ( k % i == 0 )
    13             return false ;
    14     return true ;
    15 }
    16 int main()
    17 {
    18  //   freopen ("a.txt" , "r" , stdin );
    19     int n ;
    20     while ( scanf ("%d", &n) , n )
    21     {
    22         int i ;
    23         int t = n / 2 ;
    24         for ( i = 3 ; i <= t ; i += 2 )
    25             if ( isprime ( i ) && isprime ( n - i ) )
    26                 break ;
    27         printf ( "%d = %d + %d
    " , n , i , n - i ) ;
    28     }
    29     return 0;
    30 }
    n = isprime(i) + isprime(n - i)
  • 相关阅读:
    排序应用于链表
    线性时间排序算法
    排序算法
    2017计蒜客蓝桥杯模拟赛5
    第六届河南省赛 River Crossing 简单DP
    POJ 3061 Subsequence 尺取法 POJ 3320 Jessica's Reading Problem map+set+尺取法
    天梯赛 L2-020. 功夫传人 BFS
    天梯赛 L2-019. 悄悄关注 map
    配置在Chrome,Firefox中打开
    http响应状态码大全
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4272108.html
Copyright © 2011-2022 走看看