zoukankan      html  css  js  c++  java
  • Goldbach's Conjecture

                         Goldbach's Conjecture
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
    Submit Status

    Description

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture: 
    Every even number greater than 4 can be 
    written as the sum of two odd prime numbers.

    For example: 
    8 = 3 + 5. Both 3 and 5 are odd prime numbers. 
    20 = 3 + 17 = 7 + 13. 
    42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

    Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.) 
    Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million. 

    Input

    The input will contain one or more test cases. 
    Each test case consists of one even integer n with 6 <= n < 1000000. 
    Input will be terminated by a value of 0 for n.

    Output

    For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

    Sample Input

    8
    20
    42
    0
    

    Sample Output

    8 = 3 + 5
    20 = 3 + 17
    42 = 5 + 37
     1 #include<iostream>
     2 #include<cstdlib>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<algorithm>
     6 #include<cmath>
     7 using namespace std;
     8 bool isprime ( int k )
     9 {
    10     int t = sqrt ( k + 0.5 ) ;
    11     for ( int i = 2  ; i <= t ; i ++ )
    12         if ( k % i == 0 )
    13             return false ;
    14     return true ;
    15 }
    16 int main()
    17 {
    18  //   freopen ("a.txt" , "r" , stdin );
    19     int n ;
    20     while ( scanf ("%d", &n) , n )
    21     {
    22         int i ;
    23         int t = n / 2 ;
    24         for ( i = 3 ; i <= t ; i += 2 )
    25             if ( isprime ( i ) && isprime ( n - i ) )
    26                 break ;
    27         printf ( "%d = %d + %d
    " , n , i , n - i ) ;
    28     }
    29     return 0;
    30 }
    n = isprime(i) + isprime(n - i)
  • 相关阅读:
    SWT界面刷新
    如何查看SWT源代码和帮助文档
    五分钟带你搞懂子网掩码
    python操作excel实用脚本
    Maven多镜像配置
    FrameWork数据权限浅析4之基于多维度配置表实现行级数据安全
    FrameWork数据权限浅析3之基于角色的配置表实现行级数据安全
    FrameWork数据权限浅析2之基于用户的配置表实现行级数据安全
    FrameWork数据权限浅析1之基于手工修改模型实现行级数据安全
    Framework元数据向导错误之BMT-MD-6001与BMT-IMP-0002
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4272108.html
Copyright © 2011-2022 走看看