zoukankan      html  css  js  c++  java
  • The Bottom of a Graph(tarjan + 缩点)

    The Bottom of a Graph
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 9139   Accepted: 3794

    Description

    We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
    Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1in G and we say that vn+1 is reachable from v1, writing (v1→vn+1). 
    Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

    Input

    The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

    Output

    For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

    Sample Input

    3 3
    1 3 2 3 3 1
    2 1
    1 2
    0
    

    Sample Output

    1 3
    2
    

    Source

    参考代码这里:http://blog.csdn.net/ehi11/article/details/7884851

    缩点:(这个概念也是看了别人的理解)先求有向图的强连通分量 , 如果几个点同属于一个强连通 , 那就给它们标上相同的记号 , 这样这几个点的集合就形成了一个缩点。

     题目大意:求出度为0的强连通分量

     1 #include<stdio.h>
     2 #include<queue>
     3 #include<string.h>
     4 using namespace std;
     5 const int M = 50010 ;
     6 int n , m ;
     7 int stack [M] , top = 0 , index = 0;
     8 bool instack [M] ;
     9 int dfn[M] , low[M] ;
    10 int cnt = 0 ;
    11 vector <int> e[M] ;
    12 int belong[M] ;
    13 int out[M] ;
    14 
    15 void init (int n)
    16 {
    17     top = 0 ;
    18     cnt = 0 ;
    19     index = 0 ;
    20     memset (stack , -1 , sizeof(stack)) ;
    21     memset (instack , 0 , sizeof(instack)) ;
    22     memset (dfn , -1 , sizeof(dfn)) ;
    23     memset (low , -1 , sizeof(low)) ;
    24     for (int i = 0 ; i <= n ; i++)
    25         e[i].clear () ;
    26     memset (belong , -1 , sizeof(belong)) ;
    27     memset (out , 0 , sizeof(out)) ;
    28 }
    29 
    30 void tarjan (int u)
    31 {
    32     int v ;
    33     dfn[u] = low[u] = index++ ;
    34     instack[u] = true ;
    35     stack[++top] = u ;
    36     for (int i = 0 ; i < e[u].size () ; i++) {
    37         v = e[u][i] ;
    38         if (dfn[v] == -1) {
    39             tarjan (v) ;
    40             low[u] = min (low[u] , low[v]) ;
    41         }
    42         else if (instack[v])
    43             low[u] = min (low[u] , dfn[v]) ;
    44     }
    45     if (low[u] == dfn[u]) {
    46         cnt++ ;
    47         do {
    48             v = stack[top--] ;
    49             instack[v] = false ;
    50             belong[v] = cnt ;
    51         } while (u != v) ;
    52     }
    53 }
    54 
    55 int main ()
    56 {
    57    //freopen ("a.txt" , "r" , stdin) ;
    58     int u , v ;
    59     while (~ scanf ("%d" ,&n)) {
    60         if (n == 0)
    61             break ;
    62         init (n) ;
    63         scanf ("%d" , &m) ;
    64         while (m--) {
    65             scanf ("%d%d" , &u , &v) ;
    66             e[u].push_back (v) ;
    67         }
    68         for (int i = 1 ; i <= n ; i++) {
    69             if (dfn[i] == -1)
    70                 tarjan (i) ;
    71         }
    72         for (int i = 1 ; i <= n ; i++) {
    73             for (int j = 0 ; j < e[i].size () ; j++) {
    74                 if (belong [i] != belong[e[i][j]])
    75                     out[belong[i]] ++;
    76             }
    77         }
    78         int k = 0 ;
    79         for (int i = 1 ; i <= n ; i++) {
    80             if (out[belong[i]] == 0) {
    81                 if (k++)
    82                     printf (" ") ;
    83                 printf ("%d" , i) ;
    84             }
    85         }
    86         puts ("") ;
    87     }
    88     return 0 ;
    89 }
    View Code
  • 相关阅读:
    C# WinForm程序退出的方法
    SpringCloud 微服务框架
    idea 常用操作
    Maven 学习笔记
    SpringBoot 快速开发框架
    html 零散问题
    Java方法注释模板
    Seating Arrangement
    hibernate 离线查询(DetachedCriteria)
    hibernate qbc查询
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4310720.html
Copyright © 2011-2022 走看看