zoukankan      html  css  js  c++  java
  • cf.295.C.DNA Alignment(数学推导)

    DNA Alignment
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Vasya became interested in bioinformatics. He's going to write an article about similar cyclic DNA sequences, so he invented a new method for determining the similarity of cyclic sequences.

    Let's assume that strings s and t have the same length n, then the function h(s, t) is defined as the number of positions in which the respective symbols of s and t are the same. Function h(s, t) can be used to define the function of Vasya distance ρ(s, t):

    where  is obtained from string s, by applying left circular shift i times. For example,
    ρ("AGC", "CGT") = 
    h("AGC", "CGT") + h("AGC", "GTC") + h("AGC", "TCG") + 
    h("GCA", "CGT") + h("GCA", "GTC") + h("GCA", "TCG") + 
    h("CAG", "CGT") + h("CAG", "GTC") + h("CAG", "TCG") = 
    1 + 1 + 0 + 0 + 1 + 1 + 1 + 0 + 1 = 6

    Vasya found a string s of length n on the Internet. Now he wants to count how many strings t there are such that the Vasya distance from the string s attains maximum possible value. Formally speaking, t must satisfy the equation: .

    Vasya could not try all possible strings to find an answer, so he needs your help. As the answer may be very large, count the number of such strings modulo 109 + 7.

    Input

    The first line of the input contains a single integer n (1 ≤ n ≤ 105).

    The second line of the input contains a single string of length n, consisting of characters "ACGT".

    Output

    Print a single number — the answer modulo 109 + 7.

    Sample test(s)
    input
    1
    C
    output
    1
    input
    2
    AG
    output
    4
    input
    3
    TTT
    output
    1
    Note

    Please note that if for two distinct strings t1 and t2 values ρ(s, t1) и ρ(s, t2) are maximum among all possible t, then both strings must be taken into account in the answer even if one of them can be obtained by a circular shift of another one.

    In the first sample, there is ρ("C", "C") = 1, for the remaining strings t of length 1 the value of ρ(s, t) is 0.

    In the second sample, ρ("AG", "AG") = ρ("AG", "GA") = ρ("AG", "AA") = ρ("AG", "GG") = 4.

    In the third sample, ρ("TTT", "TTT") = 27

    Tutorial:

    What is ρ(s, t) equal to? For every character of s and every character of t there is a unique cyclic shift of t that superposes these characters (indeed, after 0, ..., n - 1 shifts the character in t occupies different positions, and one of them matches the one of the character of s); therefore, there exist n cyclic shifts of s and t that superpose these characters (the situation is symmetrical for every position of the character of s). It follows that the input in ρ from a single character ti is equal to n × (the number of characters in s equal to ti). Therefore, ρ(s, t) is maximal when every character of t occurs the maximal possible number of times in s. Simply count the number of occurences for every type of characters; the answer is Kn, where K is the number of character types that occur in s most frequently. This is an O(n) solution.

    others:
     1 #include <iostream>
     2 #include <vector>
     3 #include <algorithm>
     4 #include <string>
     5 #include <unordered_map>
     6 #include <cassert>
     7 using namespace std;
     8 int t[4];
     9 long long mod = 1000000007;
    10 
    11 long long pot(int p, int wyk) {
    12     if(wyk == 0) return 1;
    13     return (p * pot(p, wyk-1)) % mod;
    14 }
    15 
    16 int main() {
    17     ios_base::sync_with_stdio(0);
    18     int n;
    19     string s;
    20     cin >> n >> s;
    21     for(auto a: s) {
    22         if(a == 'C') t[0]++;
    23         if(a == 'T') t[1]++;
    24         if(a == 'G') t[2]++;
    25         if(a == 'A') t[3]++;
    26     }
    27     int maxi = 0, licz = 0;
    28     for(int i = 0; i < 4; ++i)
    29         maxi = max(maxi, t[i]);
    30     for(int i = 0; i < 4; ++i)
    31         if(t[i] == maxi) licz++;
    32     
    33     cout << pot(licz, n) << "
    ";
    34     return 0;
    35 }
    View Code
  • 相关阅读:
    C#面向对象五(继承、抽象类和抽象方法、多态、虚方法、is、as、new覆盖关键字)
    C#面向对象四(文件与目录操作、序列化与反序列化、XML)
    C#面向对象三(常用控件)
    C#面向对象二(集合泛型及排序)
    C#面向对象一(方法、封装、类、两种数据类型)
    如何最快找到重点 —— 小小码虫瞎想の效率与绩效篇(一)
    Android Telephony —— 手机信号实时变化源码分析过程记录
    Android 某些配置记录
    Macbook Pro 使用小记
    fhq treap 范浩强平衡树
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4337390.html
Copyright © 2011-2022 走看看