zoukankan      html  css  js  c++  java
  • hdu.5195.DZY Loves Topological Sorting(topo排序 && 贪心)

    DZY Loves Topological Sorting

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 866    Accepted Submission(s): 250

    Problem Description
    A topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge (uv) from vertex u to vertex v,u comes before v in the ordering. Now, DZY has a directed acyclic graph(DAG). You should find the lexicographically largest topological ordering after erasing at most k edges from the graph.
     
    Input
    The input consists several test cases. (TestCase5) The first line, three integers n,m,k(1n,m105,0km). Each of the next m lines has two integers: u,v(uv,1u,vn), representing a direct edge(uv).
     
    Output
    For each test case, output the lexicographically largest topological ordering.
     
    Sample Input
    5 5 2 1 2 4 5 2 4 3 4 2 3 3 2 0 1 2 1 3
     
    Sample Output
    5 3 1 2 4 1 3 2
    Hint
    Case 1. Erase the edge (2->3),(4->5). And the lexicographically largest topological ordering is (5,3,1,2,4).
     
    Source
     
     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<queue>
     4 using namespace std;
     5 const int M = 100005 ;
     6 struct Edge
     7 {
     8     int v , nxt ;
     9     Edge () {}
    10     Edge (int v , int nxt) : v (v) , nxt (nxt) {}
    11 }e[M];
    12 int H[M] , E ;
    13 bool vis[M] ;
    14 int ans[M] , top ;
    15 int in[M] ;
    16 int n , m , k ;
    17 int u , v ;
    18 inline int read () {
    19     int ans = 0; char c; bool flag = false;
    20     while ((c = getchar()) == ' ' || c == '
    ' || c == '
    ');
    21     if (c == '-') flag = true; else ans = c - '0';
    22     while ((c = getchar()) >= '0' && c <= '9') ans = ans * 10 + c - '0';
    23     return ans * (flag ? -1 : 1);
    24 }
    25 
    26 void addedge ()
    27 {
    28     e[E] = Edge ( v , H[u] ) ;
    29     H[u] = E ++ ;
    30 }
    31 
    32 void init ()
    33 {
    34     E = 0 ;
    35     top = 0 ;
    36     memset (H , - 1 , sizeof(H)) ;
    37     memset (ans , 0 , sizeof(ans) ) ;
    38     memset (in , 0 , sizeof(in)) ;
    39     memset (vis , 0 , sizeof(vis) ) ;
    40 }
    41 
    42 void topo ()
    43 {
    44     priority_queue <int> q ;
    45     while (!q.empty ()) q.pop () ;
    46     for (int i = 1 ; i <= n ; i++) if (in[i] == 0 && !vis[i]) q.push (i) ;
    47     while ( !q.empty () ) {
    48         int u = q.top () ;
    49         q.pop () ;
    50         ans[top ++] = u ;
    51         for (int i = H[u] ; ~ i ; i = e[i].nxt) {
    52             in[e[i].v] -- ;
    53             if (in[e[i].v] == 0 && !vis[e[i].v])    q.push (e[i].v) ;
    54         }
    55     }
    56 }
    57 
    58 void solve ()
    59 {
    60     init () ;
    61     while (m--) {
    62         u = read () , v = read () ;
    63         addedge () ;
    64         in[v] ++ ;
    65     }
    66     priority_queue <int> q ;
    67     for (int i = 1 ; i <= n ; i++)  if (in[i] <= k) q.push (i) ;
    68     while ( !q.empty () ) {
    69         u = q.top () ;
    70         q.pop () ;
    71         if (in[u] > k) continue ;
    72         ans[top ++] = u ;
    73         k -= in[u] ;
    74         vis[u] = 1 ;
    75         for (int i = H[u] ; ~ i ; i = e[i].nxt) {
    76            in[e[i].v] -- ;
    77            if (in[e[i].v] <= k && !vis[u] ) q.push (e[i].v) ;
    78         }
    79     }
    80     topo () ;
    81     for (int i = 0 ; i < top ; i++) {
    82         printf ("%d%c" , ans[i] , i == top - 1 ? '
    ' : ' ') ;
    83     }
    84 }
    85 
    86 int main ()
    87 {
    88    // freopen ("a.txt" , "r" , stdin ) ;
    89     while (~ scanf ("%d%d%d" , &n , &m , &k)) {
    90         solve () ;
    91     }
    92     return 0 ;
    93 }
    View Code

    用邻接表优化后,topo的时间复杂度O(n),空间复杂度也大大减少。orz。
    还有快速读入。

    托它们的福,这道题让我530ms过了。233333333

  • 相关阅读:
    关于设计
    开机速度优化
    寻找发帖“水王”《编程之美》笔记
    SPSS学习笔记
    《你的灯亮着吗》读书笔记
    《遇见未知的自己》读书笔记
    Python中字符串与字典间转换
    ide vim 设置zz
    Redis几个认识误区zz
    探索AJAX中的消息传输模式(二)
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4394050.html
Copyright © 2011-2022 走看看