zoukankan      html  css  js  c++  java
  • CF #305 (Div. 2) C. Mike and Frog(扩展欧几里得&&当然暴力is also no problem)

    C. Mike and Frog
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Mike has a frog and a flower. His frog is named Xaniar and his flower is named Abol. Initially(at time 0), height of Xaniar is h1 and height of Abol is h2. Each second, Mike waters Abol and Xaniar.

    So, if height of Xaniar is h1 and height of Abol is h2, after one second height of Xaniar will become  and height of Abol will become  where x1, y1, x2 and y2 are some integer numbers and  denotes the remainder of amodulo b.

    Mike is a competitive programmer fan. He wants to know the minimum time it takes until height of Xania is a1 and height of Abol is a2.

    Mike has asked you for your help. Calculate the minimum time or say it will never happen.

    Input

    The first line of input contains integer m (2 ≤ m ≤ 106).

    The second line of input contains integers h1 and a1 (0 ≤ h1, a1 < m).

    The third line of input contains integers x1 and y1 (0 ≤ x1, y1 < m).

    The fourth line of input contains integers h2 and a2 (0 ≤ h2, a2 < m).

    The fifth line of input contains integers x2 and y2 (0 ≤ x2, y2 < m).

    It is guaranteed that h1 ≠ a1 and h2 ≠ a2.

    Output

    Print the minimum number of seconds until Xaniar reaches height a1 and Abol reaches height a2 or print -1 otherwise.

    Sample test(s)
    input
    5 
    4 2
    1 1
    0 1
    2 3
    output
    3
    input
    1023 
    1 2
    1 0
    1 2
    1 1
    output
    -1

    题解:

    In this editorial, consider p = m, a = h1, a′ = a1, b = h2 and b′ = a2.

    First of all, find the number of seconds it takes until height of Xaniar becomes a (starting from a) and call it q. Please note that q ≤ pand if we don't reach a after p seconds, then answer is  - 1.

    If after q seconds also height of Abol will become equal to b then answer if q.

    Otherwise, find the height of Abdol after q seconds and call it e.

    Then find the number of seconds it takes until height of Xaniar becomes a (starting from a′) and call it c. Please note that c ≤ p and if we don't reach a after p seconds, then answer is  - 1.

    if g(x) = Xx + Y, then find f(x) = g(g(...(g(x)))) (c times). It is really easy:

    c = 1, d = 0
    for i = 1 to c
         c = (cX) % p
         d = (dX + Y) % p

    Then,

    f(x)
         return (cx + d) % p

    Actually, if height of Abol is x then, after c seconds it will be f(x).

    Then, starting from e, find the minimum number of steps of performing e = f(e) it takes to reach b and call it o. Please note thato ≤ p and if we don't reach b after p seconds, then answer is  - 1.

    Then answer is x + c × o.

    Time Complexity: 

     

      1 #include<stdio.h>
      2 #include<string.h>
      3 #include<algorithm>
      4 typedef long long ll ;
      5 ll mod ;
      6 ll a , a1 ;
      7 ll x , y ;
      8 ll b , b1 ;
      9 ll _x , _y ;
     10 ll A , T ;
     11 ll B , _T ;
     12 
     13 ll exgcd (ll a,ll b,ll& x,ll &y)
     14  {
     15      if(b==0){
     16          x=1;
     17          y=0;
     18          return a;
     19      }
     20     ll d = exgcd ( b , a % b , x , y ) ;
     21     ll tmp = x ;
     22     x = y ;
     23     y = tmp - a / b * y ;
     24     return d;
     25 }
     26 //用扩展欧几里得算法解线性方程ax+by=c;
     27 void __exgcd(ll a , ll b , ll c )
     28 {
     29     ll x , y ;
     30     ll d = exgcd ( a , b , x , y ) ;
     31     if(c % d) {
     32         puts ("-1") ;
     33         return ;
     34     }
     35 
     36     ll k = c / d ;
     37     x *= k ; y *= k ;//求的只是其中一个解
     38     if (d < 0) d = -d ;
     39     ll t1 = T / d , t2 = _T / d ;
     40    // printf ("t1 = %I64d , t2 = %I64d
    " , t1 , t2 ) ;
     41     //printf ("x = %I64d , y = %I64d
    " , x , y ) ;
     42     if (x < 0 || y < 0) {
     43         while (x < 0 || y < 0) {
     44             x += t1 ;
     45             y += t2 ;
     46         }
     47     }
     48     else {
     49         while (x >= 0 && y >= 0) {
     50             x -= t1 ;
     51             y -= t2 ;
     52         }
     53         x += t1 ;
     54         y += t2 ;
     55     }
     56     //printf ("x = %I64d , y = %I64d
    " , x , y ) ;
     57     printf ("%I64d
    " , A + T * y) ;
     58 }
     59 
     60 bool workA ()
     61 {
     62     ll cnt = 0 ;
     63     ll c = a  ;
     64     while (1) {
     65         cnt ++ ;
     66         c = (c * x + y) % mod ;
     67         if (c == a1) {
     68             A = cnt ;
     69             return true ;
     70         }
     71         if (cnt > mod) break ;
     72     }
     73     return false ;
     74 }
     75 
     76 bool workB ()
     77 {
     78     ll cnt = 0 ;
     79     ll c = b  ;
     80     while (1) {
     81         cnt ++ ;
     82         c = (c * _x + _y) % mod ;
     83         if (c == b1) {
     84             B = cnt ;
     85             return true ;
     86         }
     87         if (cnt > mod) break ;
     88     }
     89     return false ;
     90 }
     91 
     92 bool workT ()
     93 {
     94     T = 0 ;
     95     ll cnt = 0 ;
     96     ll c = a1  ;
     97     while (1) {
     98         cnt ++ ;
     99         c = (c * x + y) % mod ;
    100         if (c == a1) {
    101             T = cnt ;
    102             return true ;
    103         }
    104         if (cnt > mod) break ;
    105     }
    106     return false ;
    107 }
    108 
    109 bool work_T ()
    110 {
    111     _T = 0 ;
    112     ll cnt = 0 ;
    113     ll c = b1  ;
    114     while (1) {
    115         cnt ++ ;
    116         c = (c * _x + _y) % mod ;
    117         if (c == b1) {
    118             _T = cnt ;
    119             return true ;
    120         }
    121         if (cnt > mod) break ;
    122     }
    123     return false ;
    124 }
    125 
    126 int main ()
    127 {
    128     //freopen ("a.txt" , "r" , stdin ) ;
    129     while (~ scanf ("%I64d" , &mod)) {
    130         scanf ("%I64d%I64d%I64d%I64d" , &a , &a1 , &x , &y) ;
    131         scanf ("%I64d%I64d%I64d%I64d" , &b , &b1 , &_x , &_y) ;
    132         if (!workA ())  puts ("-1") ;
    133         else {
    134             if (!workB ()) puts ("-1") ;
    135             else if (A == B) printf ("%I64d
    " , A) ;
    136             else {
    137                 workT () ;
    138                 work_T () ;
    139                 if (T == 0 || _T == 0) {
    140                     if (T == 0 && _T == 0) puts ("-1") ;
    141                     else if (T == 0 ) {
    142                         if (A - B >= 0 && (A - B) % _T == 0) printf ("%I64d
    " , A) ;
    143                         else puts ("-1") ;
    144                     }
    145                     else if (_T == 0) {
    146                         if (B - A >= 0 && (B - A) % T == 0) printf ("%I64d
    " , B) ;
    147                         else puts ("-1") ;
    148                     }
    149                 } else {
    150                     ll a = _T , b = -T , c = A - B ;
    151                     __exgcd (a , b , c) ;
    152                 }
    153             }
    154         }
    155     }
    156     return 0 ;
    157 }
    View Code

     题解:

    一般情况:我们能用暴力求出a-->a1所需时间A , b-->b1所需时间B,a1-->a1时间Ta , b1-->b1时间Tb;

    注意:A , B , Ta , Tb 都会在 “mod 时间”内完成,若没在这段时间内找到,则不存在。

    所以为了达到目标显然需要满足一下等式:A + x * Ta = B + y * Tb ---- ①---> A - B = - Ta * x + Tb * y ----②;

    那么问题就转变成了求该方程是否有整数解(这道题有整数解,就必有正整数解)。

    根据扩展欧几里得算法:

          c = a * x + b * y ;

    只要满足gcd (a , b) | c (及a,b的gcd为c的约数)时,该方程必有解,我们令 d = gcd (a , b) ;

    则存在解时:(下面的_x , _y都假定为执行完 exgcd(a , b , x , y)后产生的 _x , _y)

    其中一组特解:x' = _x * c / d ;(c = A - B)

           y' = _y * c / d ;

    递推式:

        x = x' + Ta / fabs (d)  * k ;( k 为 参数)

        y = y' + Tb / fabs (d)  * k ;

    然后我们只要暴力求出可行解(x , y)中与0最接近的即可 , A + x * Ta 及为答案。

    暴力枚举:(简洁,大神的)

      1 #include <cstring>
      2 #include <map>
      3 #include <deque>
      4 #include <queue>
      5 #include <stack>
      6 #include <sstream>
      7 #include <iostream>
      8 #include <cstdio>
      9 #include <cmath>
     10 #include <math.h>
     11 #include <ctime>
     12 #include <algorithm>
     13 #include <vector>
     14 #include <set>
     15 #include <list>
     16 #include <climits>
     17 #include <cctype>
     18 #include <bitset>
     19 #include <iostream>
     20 #include <complex>
     21 
     22 using namespace std;
     23 
     24 typedef stringstream ss;
     25 typedef long long ll;
     26 typedef pair<ll, ll> ii;
     27 typedef vector<vector<ii> > vii;
     28 typedef vector<string> vs;
     29 typedef vector<ll> vi;
     30 typedef vector<double> vd;
     31 typedef long double ld;
     32 typedef vector<vector<ll> > matrix;
     33 typedef complex<double> point;
     34 
     35 #define all(v) v.begin(), v.end()
     36 #define rall(v) v.rbegin(), v.rend()
     37 #define sz(v) ((ll)v.size())
     38 #define clr(v, d) memset(v, d, sizeof(v))
     39 #define polar(r,t) ((r)*exp(point(0,(t))))
     40 #define length(a) hypot((a).real(),(a).imag())
     41 #define angle(a) atan2((a).imag() , (a).real())
     42 #define vec(a,b) ((b)-(a))
     43 #define dot(a,b) ((conj(a)*(b)).real())
     44 #define cross(a,b) ((conj(a)*(b)).imag())
     45 #define lengthSqr(a) dot(a,a)
     46 #define rotate(v,t) ((v)*exp(point(0,t)))
     47 #define rotateAbout(v,t,a) (rotate(vec(a,v),t)+(a))
     48 #define reflect(v,m) (conj((v)/(m))*m)
     49 #define dist(a,b) (sqrt(pow((a).real()-(b).real(),2.0)+pow((a).imag()-(b).imag(),2.0)))
     50 #define normalize(a) ((a)/length(a))
     51 
     52 int dx[] = { 1, -1, 0, 0 };
     53 int dy[] = { 0, 0, 1, -1 };
     54 double PI = 3.1415926535897932384626433832795;
     55 
     56 const ll oo = (ll) 1e9 + 1;
     57 const double eps = 1e-9;
     58 const ll mod = 1000000007;
     59 
     60 int main() {
     61     //freopen("a.txt", "r", stdin);
     62     ios_base::sync_with_stdio(0);
     63     ll m, h1, a1, x1, y1, h2, a2, x2, y2;
     64     cin >> m >> h1 >> a1 >> x1 >> y1 >> h2 >> a2 >> x2 >> y2;
     65     ll idx1 = -1, idx2 = -1;
     66     for (int i = 1; i <= m; i++) {
     67         h1 = (x1 * h1 + y1) % m;
     68         if (h1 == a1) {
     69             idx1 = i;
     70             break;
     71         }
     72     }
     73     for (int i = 1; i <= m; i++) {
     74         h2 = (x2 * h2 + y2) % m;
     75         if (h2 == a2) {
     76             idx2 = i;
     77             break;
     78         }
     79     }
     80 
     81     if (idx1 == -1 || idx2 == -1) {
     82         cout << "-1" << endl;
     83         return 0;
     84     }
     85 
     86     ll step1, step2;
     87     for (int i = 1; i <= m; i++) {
     88         h1 = (x1 * h1 + y1) % m;
     89         if (h1 == a1) {
     90             step1 = i;
     91             break;
     92         }
     93     }
     94     for (int i = 1; i <= m; i++) {
     95         h2 = (x2 * h2 + y2) % m;
     96         if (h2 == a2) {
     97             step2 = i;
     98             break;
     99         }
    100     }
    101     //printf ("idx1 = %I64d , idx2 = %I64d , step1 = %I64d, step2 = %I64d
    " , idx1 , idx2 , step1 , step2 ) ;
    102     for (int i = 1; i <= 2 * m; i++) {
    103         if (idx1 == idx2) {
    104             cout << idx1 << endl;
    105             return 0;
    106         }
    107         if (idx1 > idx2) {
    108             idx2 += step2;
    109         } else {
    110             idx1 += step1;
    111         }
    112     }
    113     cout << "-1" << endl;
    114     return 0;
    115 }
    View Code
  • 相关阅读:
    转载-MongoDB 分片集群技术
    EXT4参数优化及测试---转载
    9.16周记
    PHP优化思路
    2018.09.10-拾遗
    周记8
    落地成盒-发快递
    周记7
    GTX log 6
    Gitlab Jenkins WebHook 持续集成配置踩坑记
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4533193.html
Copyright © 2011-2022 走看看