zoukankan      html  css  js  c++  java
  • CF #305(Div.2) D. Mike and Feet(数学推导)

    D. Mike and Feet
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Mike is the president of country What-The-Fatherland. There are n bears living in this country besides Mike. All of them are standing in a line and they are numbered from 1 to n from left to right. i-th bear is exactly ai feet high.

    A group of bears is a non-empty contiguous segment of the line. The size of a group is the number of bears in that group. The strengthof a group is the minimum height of the bear in that group.

    Mike is a curious to know for each x such that 1 ≤ x ≤ n the maximum strength among all groups of size x.

    Input

    The first line of input contains integer n (1 ≤ n ≤ 2 × 10^5), the number of bears.

    The second line contains n integers separated by space, a1, a2, ..., an (1 ≤ ai ≤ 10^9), heights of bears.

    Output

    Print n integers in one line. For each x from 1 to n, print the maximum strength among all groups of size x.

    Sample test(s)
    input
    10
    1 2 3 4 5 4 3 2 1 6
    output
    6 4 4 3 3 2 2 1 1 1 
     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<algorithm>
     4 const int M = 2e5 + 10 ;
     5 int l[M] , r[M] , a[M] ;
     6 int b[M] ;
     7 int n ;
     8 int main ()
     9 {
    10    // freopen ("a.txt" , "r" , stdin ) ;
    11     scanf ("%d" , &n) ;
    12     for (int i = 1 ; i <= n ; i ++) scanf ("%d" , &a[i]) ;
    13     a[0] = 0 ; a[n + 1] = 0 ;
    14     memset (b , - 1 , sizeof(b)) ;
    15     for (int i = 1 ; i <= n ; i ++) {
    16         l[i] = i ;
    17         while (a[l[i] - 1] >= a[i]) l[i] = l[l[i] - 1] ;
    18     }
    19     for (int i = n ; i >= 1 ; i --) {
    20         r[i] = i ;
    21         while (a[r[i] + 1] >= a[i]) r[i] = r[r[i] + 1] ;
    22     }
    23     for (int i = 1 ; i <= n ; i ++) {
    24         int id = r[i] - l[i] + 1 ;
    25         b[id] = std::max (b[id] , a[i]);
    26     }
    27     for (int i = n ; i >= 2 ; i --) {
    28         if (b[i - 1] < b[i] ) b[i - 1] = b[i] ;
    29     }
    30     for (int i = 1 ; i <= n ; i ++) printf ("%d%c" , b[i] , i == n ? '
    ' : ' ') ;
    31     return 0 ;
    32 }
    33 /*10
    34 1 2 3 4 5 4 3 2 1 6
    35 */
    View Code
    1. 最质补的想法,我们先考虑a[i]能影响的区间大小为w[i],(另b[i] 为长度为i的区间的最小的最大值)

    for i = 1 to n

      for j = 1 to w[i]

        b[j] = max (b[j] , a[i]);

      end

    end

    这样最坏情况下O(n^n),显然tle.

    通过yy可以发现,区间大的可以跟新区间小的,so:

    for i = 1 to n 

      b[w[i]] = max (b[w[i]] , a[i]);

    end

    for i = n to 2

      if (b[i - 1] < b[i] )   b[i - 1] = b[i] ;

    end

    这样就变为O(n)了。

      2.第二个要解决的问题时我们怎样在O(n)内求出w[i] ?

    令w[i] = r[i] - l[i] ;

    令r[i] , l[i]分别保存a[i]所能影响大的最右 和 最左。

    这样在已知l[i]时,我们便可以在O(1)时间内求出l[i + 1]了。

  • 相关阅读:
    实现分布式爬虫
    hadoop安装文档
    远程连接mysql和redis配置
    scrapy(2)
    10月10号动手动脑
    10月6日和动手动脑
    10月4日
    课程总结
    又学java的第一天
    第一节测试总结
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4537468.html
Copyright © 2011-2022 走看看