First One
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 831 Accepted Submission(s): 253
Problem Description
soda has an integer array a1,a2,…,an. Let S(i,j) be the sum of ai,ai+1,…,aj. Now soda wants to know the value below:
Note: In this problem, you can consider log20 as 0.
∑i=1n∑j=in(⌊log2S(i,j)⌋+1)×(i+j)
Note: In this problem, you can consider log20 as 0.
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤105), the number of integers in the array.
The next line contains n integers a1,a2,…,an (0≤ai≤105).
The first line contains an integer n (1≤n≤105), the number of integers in the array.
The next line contains n integers a1,a2,…,an (0≤ai≤105).
Output
For each test case, output the value.
Sample Input
1
2
1 1
Sample Output
12
Source
1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll ; 4 const int M = 1e5 + 10 ; 5 ll n ; 6 ll a[M] ; 7 ll ure[M] ; 8 ll tot ; 9 void solve () { 10 for (int k = 1 ; k < 40 ; k ++) { 11 ll low = 1ll << k , sum = 0 ; 12 for (int i = 1 , j = 0 ; i <= n ; i ++) { 13 while (j <= n && sum < low) sum += a[++j] ; 14 if (sum >= low) tot += i * (n-j+1) + ure[j] ; 15 else break ; 16 sum -= a[i] ; 17 } 18 } 19 printf ("%I64d " , tot) ; 20 } 21 22 int main () { 23 int T ; 24 scanf ("%d" , &T ) ; 25 while (T --) { 26 scanf ("%I64d" , &n) ; 27 for (int i = 1 ; i <= n ; i ++) scanf ("%I64d" , &a[i]) ; 28 29 ure[n+1] = 0 ; 30 tot = 0 ; 31 for (int i = n ; i >= 1 ; i --) { 32 ure[i] = ure[i+1] + i ; 33 tot += i * (n-i+1) + ure[i] ; 34 } 35 36 solve () ; 37 } 38 return 0 ; 39 }
比赛的时候思路很明确,log2 + 1那部分最多就1~40,所以枚举一下,每次枚举时用 尺取法 求得所有区间即可。
所以总的复杂度为O(40*n) , 后来又注意到尺取法的界限判断是要映射一下,所以复杂度变成了O(40*n*log40) ,然后oj就给我判TLE了,
这只能说出题人卡的实在是。。。。是在下输了
当然赛后看标成时,还是发现写法漏洞很大。
1.标成上他把log2 和 1 这两部分分开来处理,算1这部分O(n)的复杂度。
2.因为log2那部分是个浮动的区间和,所以直接用 尺取法 不行。(因为我的作法是:比如说枚举到5时,我想利用 尺取法 得到所有映射后为5的区间)
但标成很机智的改成了:枚举到i时,当前多少个区间映射后的值是>=i的,然后加上他们。如果每次枚举都这么做,你会发现区间映射值为5的就加了5次,
为6的被加了6次。
因此把浮动的区间和,变成了一个定值,那么 尺取法 就又能发挥它的作用了。