zoukankan      html  css  js  c++  java
  • K近邻算法原理

    K近鄰算法,其英文全稱:K-Nearest Neighbor Classification,一般簡稱為KNN。該算法是一種經典的分類算法

    在K近鄰分類算法中,對於預測的新樣本數據(未有分類標籤),將其與訓練樣本一一進行比較,

    找到最為相似的K個訓練樣本,並以這K個訓練樣本中出現最多的分類標籤作為最終新樣本數據的預測標籤。

    其思想與「近朱者赤,近墨者黑」有異曲同工之妙!

    K近邻算法有三个要素:

    一、K值的定義(通俗理解即選擇多少個和自己比較相似的小夥伴)

    二、距離(相似度)定義(衡量自己與小夥伴是否相似的度量標準/公式)

    三、鄰居類別的統計(採用少數服從多數的原則,給未分類標籤數據進行賦值)


    如上圖所示,我們有學生1,2,3,4,5(新學生)的數據(體重、身高),

    其中學生1,2,3,4還有標籤(健康或亚健康)。

    我們的問題是通過對學生1,2,3,4的數據進行學習,然後對學生5的标签(健康或亚健康)做出預測?

     






  • 相关阅读:
    3.css中的颜色
    5.html5中的路径表示
    4.html5中超链接
    3.html5的文本元素
    2.html5的基本格式
    1.html5究竟是什么
    2.css选择器
    C++11--智能指针shared_ptr,weak_ptr,unique_ptr <memory>
    C++11--编译器生成的函数
    C++11--右值引用(Perfect Forwarding)
  • 原文地址:https://www.cnblogs.com/gezhaoatdlnu/p/13743570.html
Copyright © 2011-2022 走看看