zoukankan      html  css  js  c++  java
  • tensorflow:验证码的识别(中)

    三、训练识别模型

    首先先拷贝一个nets文件夹,主要使用的是文件夹下的两个文件nets_factory.py、alexnet.py,用于导入训练使用的网络alexnet。

    nets_factory.py

    # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    # http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
    """Contains a factory for building various models."""
    
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    import functools
    
    import tensorflow as tf
    
    from nets import alexnet
    from nets import cifarnet
    from nets import inception
    from nets import lenet
    from nets import overfeat
    from nets import resnet_v1
    from nets import resnet_v2
    from nets import vgg
    
    slim = tf.contrib.slim
    
    networks_map = {'alexnet_v2': alexnet.alexnet_v2,
                    'cifarnet': cifarnet.cifarnet,
                    'overfeat': overfeat.overfeat,
                    'vgg_a': vgg.vgg_a,
                    'vgg_16': vgg.vgg_16,
                    'vgg_19': vgg.vgg_19,
                    'inception_v1': inception.inception_v1,
                    'inception_v2': inception.inception_v2,
                    'inception_v3': inception.inception_v3,
                    'inception_v4': inception.inception_v4,
                    'inception_resnet_v2': inception.inception_resnet_v2,
                    'lenet': lenet.lenet,
                    'resnet_v1_50': resnet_v1.resnet_v1_50,
                    'resnet_v1_101': resnet_v1.resnet_v1_101,
                    'resnet_v1_152': resnet_v1.resnet_v1_152,
                    'resnet_v1_200': resnet_v1.resnet_v1_200,
                    'resnet_v2_50': resnet_v2.resnet_v2_50,
                    'resnet_v2_101': resnet_v2.resnet_v2_101,
                    'resnet_v2_152': resnet_v2.resnet_v2_152,
                    'resnet_v2_200': resnet_v2.resnet_v2_200,
                   }
    
    arg_scopes_map = {'alexnet_v2': alexnet.alexnet_v2_arg_scope,
                      'cifarnet': cifarnet.cifarnet_arg_scope,
                      'overfeat': overfeat.overfeat_arg_scope,
                      'vgg_a': vgg.vgg_arg_scope,
                      'vgg_16': vgg.vgg_arg_scope,
                      'vgg_19': vgg.vgg_arg_scope,
                      'inception_v1': inception.inception_v3_arg_scope,
                      'inception_v2': inception.inception_v3_arg_scope,
                      'inception_v3': inception.inception_v3_arg_scope,
                      'inception_v4': inception.inception_v4_arg_scope,
                      'inception_resnet_v2':
                      inception.inception_resnet_v2_arg_scope,
                      'lenet': lenet.lenet_arg_scope,
                      'resnet_v1_50': resnet_v1.resnet_arg_scope,
                      'resnet_v1_101': resnet_v1.resnet_arg_scope,
                      'resnet_v1_152': resnet_v1.resnet_arg_scope,
                      'resnet_v1_200': resnet_v1.resnet_arg_scope,
                      'resnet_v2_50': resnet_v2.resnet_arg_scope,
                      'resnet_v2_101': resnet_v2.resnet_arg_scope,
                      'resnet_v2_152': resnet_v2.resnet_arg_scope,
                      'resnet_v2_200': resnet_v2.resnet_arg_scope,
                     }
    
    
    def get_network_fn(name, num_classes, weight_decay=0.0, is_training=False):
      """Returns a network_fn such as `logits, end_points = network_fn(images)`.
    
      Args:
        name: The name of the network.
        num_classes: The number of classes to use for classification.
        weight_decay: The l2 coefficient for the model weights.
        is_training: `True` if the model is being used for training and `False`
          otherwise.
    
      Returns:
        network_fn: A function that applies the model to a batch of images. It has
          the following signature:
            logits, end_points = network_fn(images)
      Raises:
        ValueError: If network `name` is not recognized.
      """
      if name not in networks_map:
        raise ValueError('Name of network unknown %s' % name)
      func = networks_map[name]
      @functools.wraps(func)
      def network_fn(images):
        arg_scope = arg_scopes_map[name](weight_decay=weight_decay)
        with slim.arg_scope(arg_scope):
          return func(images, num_classes, is_training=is_training)
      if hasattr(func, 'default_image_size'):
        network_fn.default_image_size = func.default_image_size
    
      return network_fn

    alexnet.py

    对源码做出一定的修改,前面的卷积和池化作为共享层保持不变,主要就是修改最后的输出。net0-net3

    # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    # http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
    """Contains a model definition for AlexNet.
    
    This work was first described in:
      ImageNet Classification with Deep Convolutional Neural Networks
      Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton
    
    and later refined in:
      One weird trick for parallelizing convolutional neural networks
      Alex Krizhevsky, 2014
    
    Here we provide the implementation proposed in "One weird trick" and not
    "ImageNet Classification", as per the paper, the LRN layers have been removed.
    
    Usage:
      with slim.arg_scope(alexnet.alexnet_v2_arg_scope()):
        outputs, end_points = alexnet.alexnet_v2(inputs)
    
    @@alexnet_v2
    """
    
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import tensorflow as tf
    
    slim = tf.contrib.slim
    trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)
    
    
    def alexnet_v2_arg_scope(weight_decay=0.0005):
      with slim.arg_scope([slim.conv2d, slim.fully_connected],
                          activation_fn=tf.nn.relu,
                          biases_initializer=tf.constant_initializer(0.1),
                          weights_regularizer=slim.l2_regularizer(weight_decay)):
        with slim.arg_scope([slim.conv2d], padding='SAME'):
          with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc:
            return arg_sc
    
    
    def alexnet_v2(inputs,
                   num_classes=1000,
                   is_training=True,
                   dropout_keep_prob=0.5,
                   spatial_squeeze=True,
                   scope='alexnet_v2'):
      """AlexNet version 2.
    
      Described in: http://arxiv.org/pdf/1404.5997v2.pdf
      Parameters from:
      github.com/akrizhevsky/cuda-convnet2/blob/master/layers/
      layers-imagenet-1gpu.cfg
    
      Note: All the fully_connected layers have been transformed to conv2d layers.
            To use in classification mode, resize input to 224x224. To use in fully
            convolutional mode, set spatial_squeeze to false.
            The LRN layers have been removed and change the initializers from
            random_normal_initializer to xavier_initializer.
    
      Args:
        inputs: a tensor of size [batch_size, height, width, channels].
        num_classes: number of predicted classes.
        is_training: whether or not the model is being trained.
        dropout_keep_prob: the probability that activations are kept in the dropout
          layers during training.
        spatial_squeeze: whether or not should squeeze the spatial dimensions of the
          outputs. Useful to remove unnecessary dimensions for classification.
        scope: Optional scope for the variables.
    
      Returns:
        the last op containing the log predictions and end_points dict.
      """
      with tf.variable_scope(scope, 'alexnet_v2', [inputs]) as sc:
        end_points_collection = sc.name + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d.
        with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
                            outputs_collections=[end_points_collection]):
          net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID',
                            scope='conv1')
          net = slim.max_pool2d(net, [3, 3], 2, scope='pool1')
          net = slim.conv2d(net, 192, [5, 5], scope='conv2')
          net = slim.max_pool2d(net, [3, 3], 2, scope='pool2')
          net = slim.conv2d(net, 384, [3, 3], scope='conv3')
          net = slim.conv2d(net, 384, [3, 3], scope='conv4')
          net = slim.conv2d(net, 256, [3, 3], scope='conv5')
          net = slim.max_pool2d(net, [3, 3], 2, scope='pool5')
    
          # Use conv2d instead of fully_connected layers.
          with slim.arg_scope([slim.conv2d],
                              weights_initializer=trunc_normal(0.005),
                              biases_initializer=tf.constant_initializer(0.1)):
            net = slim.conv2d(net, 4096, [5, 5], padding='VALID',
                              scope='fc6')
            net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                               scope='dropout6')
            net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
            net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                               scope='dropout7')
            net0 = slim.conv2d(net, num_classes, [1, 1],
                              activation_fn=None,
                              normalizer_fn=None,
                              biases_initializer=tf.zeros_initializer(),
                              scope='fc8_0')
            net1 = slim.conv2d(net, num_classes, [1, 1],
                              activation_fn=None,
                              normalizer_fn=None,
                              biases_initializer=tf.zeros_initializer(),
                              scope='fc8_1')
            net2 = slim.conv2d(net, num_classes, [1, 1],
                              activation_fn=None,
                              normalizer_fn=None,
                              biases_initializer=tf.zeros_initializer(),
                              scope='fc8_2')
            net3 = slim.conv2d(net, num_classes, [1, 1],
                              activation_fn=None,
                              normalizer_fn=None,
                              biases_initializer=tf.zeros_initializer(),
                              scope='fc8_3')
    
          # Convert end_points_collection into a end_point dict.
          end_points = slim.utils.convert_collection_to_dict(end_points_collection)
          if spatial_squeeze:
            net0 = tf.squeeze(net0, [1, 2], name='fc8_0/squeezed')
            end_points[sc.name + '/fc8_0'] = net0
            net1 = tf.squeeze(net1, [1, 2], name='fc8_1/squeezed')
            end_points[sc.name + '/fc8_1'] = net1
            net2 = tf.squeeze(net2, [1, 2], name='fc8_2/squeezed')
            end_points[sc.name + '/fc8_2'] = net2
            net3 = tf.squeeze(net3, [1, 2], name='fc8_3/squeezed')
            end_points[sc.name + '/fc8_3'] = net3
    
    
          return net0,net1,net2,net3,end_points
    alexnet_v2.default_image_size = 224

    train.py

    import os
    import tensorflow as tf
    from PIL import Image
    from nets import nets_factory
    import numpy as np
    
    # 不同字符数量
    CHAR_SET_LEN = 10
    # 图片高度
    IMAGE_HEIGHT = 60
    # 图片宽度
    IMAGE_WIDTH = 160
    # 批次
    BATCH_SIZE = 25
    # tfrecord文件存放路径
    TFRECORD_FILE = "F:/PyCharm-projects/第十周/train.tfrecords"
    
    # placeholder
    x = tf.placeholder(tf.float32, [None, 224, 224])
    y0 = tf.placeholder(tf.float32, [None])
    y1 = tf.placeholder(tf.float32, [None])
    y2 = tf.placeholder(tf.float32, [None])
    y3 = tf.placeholder(tf.float32, [None])
    
    # 学习率
    lr = tf.Variable(0.003, dtype=tf.float32)
    
    
    # 从tfrecord读出数据
    def read_and_decode(filename):
        # 根据文件名生成一个队列
        filename_queue = tf.train.string_input_producer([filename])
        reader = tf.TFRecordReader()
        # 返回文件名和文件
        _, serialized_example = reader.read(filename_queue)
        features = tf.parse_single_example(serialized_example,
                                           features={
                                               'image': tf.FixedLenFeature([], tf.string),
                                               'label0': tf.FixedLenFeature([], tf.int64),
                                               'label1': tf.FixedLenFeature([], tf.int64),
                                               'label2': tf.FixedLenFeature([], tf.int64),
                                               'label3': tf.FixedLenFeature([], tf.int64),
                                           })
        # 获取图片数据
        image = tf.decode_raw(features['image'], tf.uint8)
        # tf.train.shuffle_batch必须确定shape
        image = tf.reshape(image, [224, 224])
        # 图片预处理
        image = tf.cast(image, tf.float32) / 255.0
        image = tf.subtract(image, 0.5)
        image = tf.multiply(image, 2.0)
        # 获取label
        label0 = tf.cast(features['label0'], tf.int32)
        label1 = tf.cast(features['label1'], tf.int32)
        label2 = tf.cast(features['label2'], tf.int32)
        label3 = tf.cast(features['label3'], tf.int32)
    
        return image, label0, label1, label2, label3
    
    
    # In[3]:
    
    # 获取图片数据和标签
    image, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)
    
    # 使用shuffle_batch可以随机打乱
    image_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch(
        [image, label0, label1, label2, label3], batch_size=BATCH_SIZE,
        capacity=50000, min_after_dequeue=10000, num_threads=1)
    
    # 定义网络结构
    train_network_fn = nets_factory.get_network_fn(
        'alexnet_v2',
        num_classes=CHAR_SET_LEN,
        weight_decay=0.0005,
        is_training=True)
    
    with tf.Session() as sess:
        # inputs: a tensor of size [batch_size, height, width, channels]
        X = tf.reshape(x, [BATCH_SIZE, 224, 224, 1])
        # 数据输入网络得到输出值
        logits0, logits1, logits2, logits3, end_points = train_network_fn(X)
    
        # 把标签转成one_hot的形式
        one_hot_labels0 = tf.one_hot(indices=tf.cast(y0, tf.int32), depth=CHAR_SET_LEN)
        one_hot_labels1 = tf.one_hot(indices=tf.cast(y1, tf.int32), depth=CHAR_SET_LEN)
        one_hot_labels2 = tf.one_hot(indices=tf.cast(y2, tf.int32), depth=CHAR_SET_LEN)
        one_hot_labels3 = tf.one_hot(indices=tf.cast(y3, tf.int32), depth=CHAR_SET_LEN)
    
        # 计算loss
        loss0 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits0, labels=one_hot_labels0))
        loss1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits1, labels=one_hot_labels1))
        loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits2, labels=one_hot_labels2))
        loss3 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits3, labels=one_hot_labels3))
        # 计算总的loss
        total_loss = (loss0 + loss1 + loss2 + loss3) / 4.0
        # 优化total_loss
        optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(total_loss)
    
        # 计算准确率
        correct_prediction0 = tf.equal(tf.argmax(one_hot_labels0, 1), tf.argmax(logits0, 1))
        accuracy0 = tf.reduce_mean(tf.cast(correct_prediction0, tf.float32))
    
        correct_prediction1 = tf.equal(tf.argmax(one_hot_labels1, 1), tf.argmax(logits1, 1))
        accuracy1 = tf.reduce_mean(tf.cast(correct_prediction1, tf.float32))
    
        correct_prediction2 = tf.equal(tf.argmax(one_hot_labels2, 1), tf.argmax(logits2, 1))
        accuracy2 = tf.reduce_mean(tf.cast(correct_prediction2, tf.float32))
    
        correct_prediction3 = tf.equal(tf.argmax(one_hot_labels3, 1), tf.argmax(logits3, 1))
        accuracy3 = tf.reduce_mean(tf.cast(correct_prediction3, tf.float32))
    
        # 用于保存模型
        saver = tf.train.Saver()
        # 初始化
        sess.run(tf.global_variables_initializer())
    
        # 创建一个协调器,管理线程
        coord = tf.train.Coordinator()
        # 启动QueueRunner, 此时文件名队列已经进队
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    
        for i in range(4001):
            # 获取一个批次的数据和标签
            b_image, b_label0, b_label1, b_label2, b_label3 = sess.run(
                [image_batch, label_batch0, label_batch1, label_batch2, label_batch3])
            # 优化模型
            sess.run(optimizer, feed_dict={x: b_image, y0: b_label0, y1: b_label1, y2: b_label2, y3: b_label3})
    
            # 每迭代50次计算一次loss和准确率
            if i % 50 == 0:
                # 每迭代2000次降低一次学习率
                if i % 2000 == 0:
                    sess.run(tf.assign(lr, lr / 3))
                acc0, acc1, acc2, acc3, loss_ = sess.run([accuracy0, accuracy1, accuracy2, accuracy3, total_loss],
                                                         feed_dict={x: b_image,
                                                                    y0: b_label0,
                                                                    y1: b_label1,
                                                                    y2: b_label2,
                                                                    y3: b_label3})
                learning_rate = sess.run(lr)
                print("Iter:%d  Loss:%.3f  Accuracy:%.2f,%.2f,%.2f,%.2f  Learning_rate:%.4f" % (
                i, loss_, acc0, acc1, acc2, acc3, learning_rate))
    
                # 保存模型
                # if acc0 > 0.90 and acc1 > 0.90 and acc2 > 0.90 and acc3 > 0.90:
                if i == 4000:
                    saver.save(sess, "./captcha/models/crack_captcha.model", global_step=i)
                    break
    
                    # 通知其他线程关闭
        coord.request_stop()
        # 其他所有线程关闭之后,这一函数才能返回
        coord.join(threads)

    Iter:0 Loss:2315.252 Accuracy:0.20,0.28,0.20,0.12 Learning_rate:0.0010
    Iter:50 Loss:2.312 Accuracy:0.08,0.08,0.00,0.04 Learning_rate:0.0010

    ......

    Iter:3850 Loss:0.055 Accuracy:0.96,0.96,1.00,0.96 Learning_rate:0.0003
    Iter:3900 Loss:0.041 Accuracy:1.00,0.92,1.00,1.00 Learning_rate:0.0003
    Iter:3950 Loss:0.025 Accuracy:1.00,1.00,1.00,1.00 Learning_rate:0.0003

    从train.tfrecord读出数据和标签,打乱,将数据送入alexnet网络得到输出值,将输出的标签转化为one_hot形式,计算loss,对loss求和得total_loss并用优化器优化。计算准确率,迭代40001次,保存模型。

    四、测试模型

    import os
    import tensorflow as tf 
    from PIL import Image
    from nets import nets_factory
    import numpy as np
    import matplotlib.pyplot as plt  
    
    
    # 不同字符数量
    CHAR_SET_LEN = 10
    # 图片高度
    IMAGE_HEIGHT = 60 
    # 图片宽度
    IMAGE_WIDTH = 160  
    # 批次
    BATCH_SIZE = 1
    # tfrecord文件存放路径
    TFRECORD_FILE = "F:/PyCharm-projects/第十周/test.tfrecords"
    
    # placeholder
    x = tf.placeholder(tf.float32, [None, 224, 224])  
    
    # 从tfrecord读出数据
    def read_and_decode(filename):
        # 根据文件名生成一个队列
        filename_queue = tf.train.string_input_producer([filename])
        reader = tf.TFRecordReader()
        # 返回文件名和文件
        _, serialized_example = reader.read(filename_queue)   
        features = tf.parse_single_example(serialized_example,
                                           features={
                                               'image' : tf.FixedLenFeature([], tf.string),
                                               'label0': tf.FixedLenFeature([], tf.int64),
                                               'label1': tf.FixedLenFeature([], tf.int64),
                                               'label2': tf.FixedLenFeature([], tf.int64),
                                               'label3': tf.FixedLenFeature([], tf.int64),
                                           })
        # 获取图片数据
        image = tf.decode_raw(features['image'], tf.uint8)
        # 没有经过预处理的灰度图
        image_raw = tf.reshape(image, [224, 224])
        # tf.train.shuffle_batch必须确定shape
        image = tf.reshape(image, [224, 224])
        # 图片预处理
        image = tf.cast(image, tf.float32) / 255.0
        image = tf.subtract(image, 0.5)
        image = tf.multiply(image, 2.0)
        # 获取label
        label0 = tf.cast(features['label0'], tf.int32)
        label1 = tf.cast(features['label1'], tf.int32)
        label2 = tf.cast(features['label2'], tf.int32)
        label3 = tf.cast(features['label3'], tf.int32)
    
        return image, image_raw, label0, label1, label2, label3
    
    
    # In[3]:
    
    # 获取图片数据和标签
    image, image_raw, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)
    
    #使用shuffle_batch可以随机打乱
    image_batch, image_raw_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch(
            [image, image_raw, label0, label1, label2, label3], batch_size = BATCH_SIZE,
            capacity = 50000, min_after_dequeue=10000, num_threads=1)
    
    #定义网络结构
    train_network_fn = nets_factory.get_network_fn(
        'alexnet_v2',
        num_classes=CHAR_SET_LEN,
        weight_decay=0.0005,
        is_training=False)
    
    with tf.Session() as sess:
        # inputs: a tensor of size [batch_size, height, width, channels]
        X = tf.reshape(x, [BATCH_SIZE, 224, 224, 1])
        # 数据输入网络得到输出值
        logits0,logits1,logits2,logits3,end_points = train_network_fn(X)
        
        # 预测值
        predict0 = tf.reshape(logits0, [-1, CHAR_SET_LEN])  
        predict0 = tf.argmax(predict0, 1)  
    
        predict1 = tf.reshape(logits1, [-1, CHAR_SET_LEN])  
        predict1 = tf.argmax(predict1, 1)  
    
        predict2 = tf.reshape(logits2, [-1, CHAR_SET_LEN])  
        predict2 = tf.argmax(predict2, 1)  
    
        predict3 = tf.reshape(logits3, [-1, CHAR_SET_LEN])  
        predict3 = tf.argmax(predict3, 1)  
    
        # 初始化
        sess.run(tf.global_variables_initializer())
        # 载入训练好的模型
        saver = tf.train.Saver()
        saver.restore(sess,'./captcha/models/crack_captcha.model-4000')
    
        # 创建一个协调器,管理线程
        coord = tf.train.Coordinator()
        # 启动QueueRunner, 此时文件名队列已经进队
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    
        for i in range(10):
            # 获取一个批次的数据和标签
            b_image, b_image_raw, b_label0, b_label1 ,b_label2 ,b_label3 = sess.run([image_batch, 
                                                                        image_raw_batch, 
                                                                        label_batch0, 
                                                                        label_batch1, 
                                                                        label_batch2, 
                                                                        label_batch3])
            # 显示图片
            img=Image.fromarray(b_image_raw[0],'L')
            plt.imshow(img)
            plt.axis('off')
            plt.show()
            # 打印标签
            print('label:',b_label0, b_label1 ,b_label2 ,b_label3)
            # 预测
            label0,label1,label2,label3 = sess.run([predict0,predict1,predict2,predict3], feed_dict={x: b_image})
            # 打印预测值
            print('predict:',label0,label1,label2,label3) 
                    
        # 通知其他线程关闭
        coord.request_stop()
        # 其他所有线程关闭之后,这一函数才能返回
        coord.join(threads)

     

    label: [5] [1] [3] [7]
    predict: [5] [0] [3] [7]

    label: [6] [3] [5] [0]
    predict: [6] [3] [5] [0]
    .....
  • 相关阅读:
    uiwebview底部黑边解决
    ssh连接速度慢解决
    rutime中动态调用类的方法
    performSelector may cause a leak because its selector is unknown解决
    alpha阶段 代码结构及技术难点简介
    第十二次小组会议记录
    【第三组】心·迹 Alpha版本 成果汇报
    数据库接口使用示例
    第十一次小组会议:进一步对接记录
    2018.6.4 ~ 6.10 周进度管理
  • 原文地址:https://www.cnblogs.com/gezhuangzhuang/p/10239430.html
Copyright © 2011-2022 走看看