zoukankan      html  css  js  c++  java
  • Python深度学习案例2--新闻分类(多分类问题)

    本节构建一个网络,将路透社新闻划分为46个互斥的主题,也就是46分类

    案例2:新闻分类(多分类问题)

    1. 加载数据集

    from keras.datasets import reuters
    
    (train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)

    将数据限定在10000个最常见出现的单词,8982个训练样本和2264个测试样本

    len(train_data)

    8982

    len(test_data)

    2246

    train_data[10]

    2. 将索引解码为新闻文本

    word_index = reuters.get_word_index()
    reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
    # Note that our indices were offset by 3
    # because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown".
    decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
    train_labels[10]

    3. 编码数据

    import numpy as np
    
    def vectorize_sequences(sequences, dimension=10000):
        results = np.zeros((len(sequences), dimension))
        for i, sequence in enumerate(sequences):
            results[i, sequence] = 1
        return results
    
    # 将训练数据向量化
    x_train = vectorize_sequences(train_data)
    # 将测试数据向量化
    x_test = vectorize_sequences(test_data)
    # 将标签向量化,将标签转化为one-hot
    def to_one_hot(labels, dimension=46):
        results = np.zeros((len(labels), dimension))
        for i, label in enumerate(labels):
            results[i, label] = 1
        return results
    
    one_hot_train_labels = to_one_hot(train_labels)
    one_hot_test_labels = to_one_hot(test_labels)
    
    from keras.utils.np_utils import to_categorical
    
    one_hot_train_labels = to_categorical(train_labels)
    one_hot_test_labels = to_categorical(test_labels)

    4. 模型定义

    from keras import models
    from keras import layers
    
    model = models.Sequential()
    model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(46, activation='softmax'))

    5. 编译模型

    对于这个例子,最好的损失函数是categorical_crossentropy(分类交叉熵),它用于衡量两个概率分布之间的距离

    model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

    6. 留出验证集

    留出1000个样本作为验证集

    x_val = x_train[:1000]
    partial_x_train = x_train[1000:]
    
    y_val = one_hot_train_labels[:1000]
    partial_y_train = one_hot_train_labels[1000:]

    7. 训练模型

    history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size = 512, validation_data = (x_val, y_val))

    8. 绘制训练损失和验证损失

    import matplotlib.pyplot as plt
    
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    epochs = range(1, len(loss) + 1)
    
    plt.plot(epochs, loss, 'bo', label = 'Training loss')
    plt.plot(epochs, val_loss, 'b', label = 'Validation loss')
    plt.title('Training and validation loss')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()
    
    plt.show()

    9. 绘制训练精度和验证精度

    plt.clf()     # 清除图像
    acc = history.history['acc']
    val_acc = history.history['val_acc']
    
    plt.plot(epochs, acc, 'bo', label='Training acc')
    plt.plot(epochs, val_acc, 'b', label='Validation acc')
    plt.title('Training and validation accuracy')
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.legend()
    
    plt.show()

    10. 从头开始重新训练一个模型

    中间层有64个隐藏神经元

    # 从头开始训练一个新的模型
    model = models.Sequential()
    model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(46, activation='softmax'))
    
    model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
    model.fit(partial_x_train, partial_y_train, epochs=9, batch_size = 512, validation_data = (x_val, y_val))
    results = model.evaluate(x_test, one_hot_test_labels)
    results
    [0.981157986054119, 0.790739091745149]
    这种方法可以得到79%的精度
    import copy
    
    test_labels_copy = copy.copy(test_labels)
    np.random.shuffle(test_labels_copy)
    float(np.sum(np.array(test_labels) == np.array(test_labels_copy))) / len(test_labels)
    0.19011576135351738 完全随机的精度约为19%
    # 在新数据上生成预测结果
    predictions = model.predict(x_test)
    predictions[0].shape
    np.sum(predictions[0])
    np.argmax(predictions[0])

    11. 处理标签和损失的另一种方法

    y_train = np.array(train_labels)
    y_test = np.array(test_labels)
    model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['acc'])

    12. 中间层维度足够大的重要性

    最终输出是46维的,本代码中间层只有4个隐藏单元,中间层的维度远远小于46

    model = models.Sequential()
    model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
    model.add(layers.Dense(4, activation='relu'))
    model.add(layers.Dense(46, activation='softmax'))
    
    model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
    model.fit(partial_x_train, partial_y_train, epochs=20, batch_size = 128, validation_data = (x_val, y_val))
    Epoch 20/20
    7982/7982 [==============================] - 2s 274us/step - loss: 0.4369 - acc: 0.8779 - val_loss: 1.7934 - val_acc: 0.7160
    验证精度最大约为71%,比前面下降了8%。导致这一下降的主要原因在于,你试图将大量信息(这些信息足够回复46个类别的分割超平面)压缩到维度很小的中间空间

    13. 实验

    1. 中间层32个

    model = models.Sequential()
    model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
    model.add(layers.Dense(32, activation='relu'))
    model.add(layers.Dense(46, activation='softmax'))
    
    model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
    model.fit(partial_x_train, partial_y_train, epochs=20, batch_size = 128, validation_data = (x_val, y_val))
    results = model.evaluate(x_test, one_hot_test_labels)
    results
    Epoch 20/20
    7982/7982 [==============================] - 2s 231us/step - loss: 0.1128 - acc: 0.9564 - val_loss: 1.1904 - val_acc: 0.7970
    2246/2246 [==============================] - 0s 157us/step
    
    Out[29]:
    [1.4285533854925303, 0.7773820125196835]
    精度大约在77%

    1. 中间层128个

    model = models.Sequential()
    model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
    model.add(layers.Dense(128, activation='relu'))
    model.add(layers.Dense(46, activation='softmax'))
    
    model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
    model.fit(partial_x_train, partial_y_train, epochs=9, batch_size = 128, validation_data = (x_val, y_val))
    results = model.evaluate(x_test, one_hot_test_labels)
    results
    Epoch 9/9
    7982/7982 [==============================] - 2s 237us/step - loss: 0.1593 - acc: 0.9536 - val_loss: 1.0186 - val_acc: 0.8060
    2246/2246 [==============================] - 0s 159us/step
    
    Out[31]:
    [1.126946303426211, 0.790293855743544]
    精度大约在79%
    尝试了中间层128个,但是迭代20轮,准确率却只有77%,说明迭代次数过高,出现了过拟合。
  • 相关阅读:
    java 笔记(4) —— java I/O 流、字节流、字符流
    Java命令参数说明大全
    java 笔记(3) —— 动态代理,静态代理,cglib代理
    java 笔记(2) —— 内部类的作用
    java 笔记(1)-—— JVM基础,内存数据,内存释放,垃圾回收,即时编译技术JIT,高精度类型
    scala学习笔记(1)
    spring 小结
    收集一些java相关的文章
    Troubleshooting JDK
    WebService 的一些基本概念
  • 原文地址:https://www.cnblogs.com/gezhuangzhuang/p/9823325.html
Copyright © 2011-2022 走看看