首先给出如下的半数集问题
给定一个自然数n,由n 开始可以依次产生半数集set(n)中的数如下。
(1) n∈set(n);
(2) 在n 的左边加上一个自然数,但该自然数不能超过最近添加的数的一半;
(3) 按此规则进行处理,直到不能再添加自然数为止。
例如,set(6)={6,16,26,126,36,136}。半数集set(6)中有6 个元素。
注意半数集是多重集。
首先分析题目意思:已知一个数n,要整数k1∈[1,n/2],依次放到这个数的左边(实际上就是放到高位),然后再进行类似操作,只不过再次操作时,添加到左边的数k2的取值范围为k2∈[1,k1/2],然后依次进行操作,直到不能操作为止。当时看到这个问题,第一印象就是用一个变长容器,找到一个元素就添加进去,最后统计元素个数。基于上述流程,很容易用递归的方法写出程序。最初用C++的STL vector容器写出的程序如下:
1 #include<iostream> 2 #include<vector> 3 using namespace std; 4 int getScale(int num); 5 int calcHalfSetNum(int startNum); 6 void addElementInHalfSet(int num, int lastNum, vector<int> &set); 7 int main() { 8 int n,i; 9 vector<int> source; 10 while (cin >> n) 11 source.push_back(n); 12 for (i = 0; i < source.size(); i++) 13 cout << calcHalfSetNum(source[i]) << endl; 14 return 0; 15 } 16 int getScale(int num) { 17 int result; 18 result = 1; 19 while (num > 0) { 20 result *= 10; 21 num /= 10; 22 } 23 return result; 24 } 25 int calcHalfSetNum(int startNum) { 26 vector<int> dynArray; 27 addElementInHalfSet(startNum, startNum, dynArray); 28 return dynArray.size(); 29 } 30 void addElementInHalfSet(int num,int lastNum, vector<int> &set) { 31 int i; 32 set.push_back(num); 33 for (i = 1; i <= lastNum / 2; i++) 34 addElementInHalfSet(num + i*getScale(num), i, set); 35 return; 36 }
本身题目不要求输出目标集合中的所有元素,因此没有必要用vector来保存集合中的所有元素。根据题意,很容易得出一个一般性的递推式:h(n)=1+h(1)+...+h(k),其中k=n/2。得到这个递推式,也很容易使用递归来写出程序。但是,时间复杂度和刚才的程序一样依然是指数阶的,只是常数小一点(省却了容器操作和动态内存分配的开销)。但是基于这个递推式,很容易发现会有很多重复计算,用动态规划的方法能够避免这类重复计算。
在《算法导论》一书中,提及动态规划有两种设计方法。一种方法是带备忘的自顶向下的方法,另一种是自底向上的方法。两种方法具有相同的复杂度,常数略有差别。对于这个问题,显然对于子问题h(i)中i越小,子问题越小,即越基本。一半情况下,会选择自顶向下的方法,在自顶向下的方法中,需要在主体函数外部维护一个额外的数组,来保存中间计算结果。算法导论书中使用的是用一个“引子函数”的方法,即用一个辅助函数,先分配一个数组(更一般的,进行动态数据结构的初始化),然后把这个数组作为参数传递给主体函数,主题函数在递归时,依然将这个数组传递下去,从而保证了在整个递归过程中,所有的子情况都能够访问这个数组。对于这个问题而言,为了简单起见,可以设置一个全局数组。对于辅助数组,还需要做的一点工作就是,需要确认这个数组中的值,是不是我所需要的已经计算的子问题的结果。可以采取的方法很多,这里使用了不属于子问题的解的集合的元素(0)作为标志,有些时候,当问题的解覆盖了整个数据类型的取值范围时,也可能需要更为复杂的方式。
基于这种自顶向下的思路,我的C++代码实现如下:
1 #include<iostream> 2 #include<vector> 3 using namespace std; 4 int calcHalfSetNum(int startNum); 5 int a[10000]; 6 int main() { 7 int n; 8 unsigned i; 9 vector<int> source; 10 while (cin >> n) 11 source.push_back(n); 12 for (i = 0; i < source.size(); i++) 13 cout << calcHalfSetNum(source[i]) << endl; 14 return 0; 15 } 16 int calcHalfSetNum(int startNum) { 17 int result = 1; 18 int i; 19 if (a[startNum] > 0) 20 return a[startNum]; 21 for (i = 1; i <= startNum / 2; i++) 22 result += calcHalfSetNum(i); 23 a[startNum] = result; 24 return result; 25 } 26
对于另一种自底向上的方法,就是从h(1)开始计算,计算h(i)时,所计算过的结果都存放在数组的对应位置里,直接拿来用就可以了,直到i=n时,循环结束。这种方法就不需要在函数体外维护一个数组了,因为不需要递归调用,函数开头声明的数组在整个算法过程中都是可见的。这里是我一个哥们用C写的代码,以供参考:
1 #include<stdio.h> 2 int main() 3 { 4 int a[1000]={0},i,j,n; 5 a[0]=1;a[1]=1; 6 for(i=2;i<1000;i++) 7 for(j=0;j<=i/2;j++) 8 a[i]+=a[j]; 9 while(scanf("%d",&n)!=EOF) 10 printf("%d ",a[n]); 11 return 0; 12 }
最后还要提及一下就是,如果要输出所有元素时,因为每个元素都不一样,动态规划的方法就不可行了。动态规划算法的核心之一要求问题必须有重复的子问题的解。