zoukankan      html  css  js  c++  java
  • SPOJ

      题意:给你一个字符串,要你输出1-len的字串出现的最大次数。

    /** @xigua */
    #include <stdio.h>
    #include <cmath>
    #include <iostream>
    #include <algorithm>
    #include <vector>
    #include <stack>
    #include <cstring>
    #include <queue>
    #include <set>
    #include <string>
    #include <map>
    #include <climits>
    #define PI acos(-1)
    #define rep(a,b,c) for(int (a)=(b); (a)<(c); ++(a))
    #define drep(a,b,c) for(int (a)=(b); (a)>(c); --(a))
    #define CLR(x) memset(x, 0, sizeof(x))
    #define sf scanf
    #define pf printf
    using namespace std;
    typedef long long ll;
    typedef double db;
    const int maxn = 250005*2  + 1000;
    const int ma = 1e5 + 1000;
    const int mod = 1e9 + 7;
    const int INF = 1e8 + 5;
    const ll inf = 1e17 + 5;
    const db eps = 1e-6;
    const int MAXN = 2e5+1e3;
    struct SAM{
        int ch[maxn<<1][26];
        int fa[maxn<<1], len[maxn<<1];
        int cnt, last, root;
        void init() {
            root=1;
            memset(ch, 0, sizeof(ch));
            memset(fa, 0, sizeof(fa));
            last=cnt=root;
        }
        void add(int c) {
            int p=last, np=last=++cnt;
            len[np]=len[p]+1;
            while(!ch[p][c] && p) {
                ch[p][c]=np;
                p=fa[p];
            }
            if (p==0)  fa[np]=1;
            else {
                int q = ch[p][c];
                if(len[p] + 1 == len[q]) {
                    fa[np] = q;
                }
                else {
                    int nq = ++cnt;
                    len[nq] = len[p] + 1;
                    memcpy(ch[nq], ch[q], sizeof ch[q]);
                    fa[nq] = fa[q];
                    fa[q] = fa[np] = nq;
                    while(ch[p][c] == q && p) {
                        ch[p][c] = nq;
                        p = fa[p];
                    }
                }
            }
        }
        int find(char *s) {
            int p=root, l=0, c=0;
            int lenn=strlen(s);
            for(int i = 0; i < lenn; i++) {
                if(ch[p][s[i] - 'a']) {
                    p = ch[p][s[i] - 'a'];
                    c++;
                }
                else {
                    while(p&&!ch[p][s[i]-'a'])  p=fa[p];
                    if (!p)  c=0, p=1;
                    else  c=len[p]+1, p=ch[p][s[i]-'a'];
                }
                l = max(l, c);
            }
            printf("%d
    ", l);
        }
    }sam;
    char s[maxn];
    int c[maxn<<1], pt[maxn<<1], f[maxn];
    void innt() {
        memset(pt, 0, sizeof(pt));
        memset(c, 0, sizeof(c));
        memset(f, 0, sizeof(f));
    }
    void top() {
        for (int i=1; i<=sam.cnt; i++)
            c[sam.len[i]]++;
        for (int i=1; i<=sam.cnt; i++)
            c[i]+=c[i-1];
        for (int i=sam.cnt; i>=1; i--)
            pt[c[sam.len[i]]--]=i;      // /*拓扑排序*/ //
        /*每个子串对应相应的pt*/
    }
    int dp[maxn];
    void solve() {
        innt();
        scanf("%s", s);
        int lenn=strlen(s);
        sam.init();
        for (int i=0; i<lenn; i++) {
            sam.add(s[i]-'a');
        }
        top();
        memset(dp, 0, sizeof(dp));
        int p=sam.root;
        for (int i=0; i<lenn; i++) {
            p=sam.ch[p][s[i]-'a'];
            if (p) dp[p]++;     //先找出所有子串令dp[p]=1
        }
        for (int i=sam.cnt; i>=1; i--)  {
            p=pt[i];
            if (sam.fa[p])  dp[sam.fa[p]]+=dp[p];
            /*该子串(a)还应加上作为串(aa)的个数*/
        }
        for (int i=1; i<=sam.cnt; i++) {
            f[sam.len[i]]=max(f[sam.len[i]], dp[i]);
        }
        for(int i=lenn-1;i>=1;--i){
            if (f[i]<f[i+1])  f[i]=f[i+1];
        }
        for (int i=1; i<=lenn; i++)
            printf("%d
    ", f[i]);
    }
    int main() {
        int t = 1, cas = 1;
        //freopen("in.txt", "r", stdin);
       // freopen("out.txt", "w", stdout);
        //scanf("%d", &t);
        while(t--) {
           // printf("Case %d: ", cas++);
            solve();
        }
        return 0;
    }

     

  • 相关阅读:
    最新seo优化技巧
    5ucms 调用当前文章的评论,以及评论列表
    5ucms的评论列表该怎么写
    Data Structure Binary Tree: Check for Children Sum Property in a Binary Tree
    Data Structure Binary Tree: Level order traversal in spiral form
    Data Structure Binary Search Tree: Inorder Successor in Binary Search Tree
    Algorithm: bit manipulation
    Algorithm: pattern searching
    Algorithm: dynamic programming
    Algorithm: inversion
  • 原文地址:https://www.cnblogs.com/gggyt/p/7608377.html
Copyright © 2011-2022 走看看