zoukankan      html  css  js  c++  java
  • LMS algorithm

    梯度下降求参数

    LMS stands for “least mean squares”

    image

    image

    image

    batch gradient descent

    image

    stochastic gradient descent

    image

    直接求参数:

    image

    image

    image

    image

    image

    概率解释

    image

    e(i) are distributed IID (independently and identically distributed) according to a Gaussian distribution (also called a Normal distribution).

    image

    image

    image

    likelihood function

    image

    image

    image

    To summarize: Under the previous probabilistic assumptions on the data,least-squares regression corresponds to finding the maximum likelihood estimate of θ. This is thus one set of assumptions under which least-squares regression can be justified as a very natural method that’s just doing maximum likelihood estimation. (Note however that the probabilistic assumptions are by no means necessary for least-squares to be a perfectly good and rational procedure, and there may—and indeed there are—other natural assumptions that can also be used to justify it.)
    Note also that, in our previous discussion, our final choice of θ did notdepend on what was σ^2, and indeed we’d have arrived at the same result even if σ^2 were unknown. We will use this fact again later, when we talk about the exponential family and generalized linear models.

    Locally weighted linear regression

    image

    image

    image

    Locally weighted linear regression is the first example we’re seeing of a non-parametric algorithm. The (unweighted) linear regression algorithm that we saw earlier is known as a parametric learning algorithm, because it has a fixed, finite number of parameters, which are fit to the data. Once we’ve fit the θ and stored them away, we no longer need to keep the training data around to make future predictions. In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around. The term “non-parametric” (roughly) refers to the fact that the amount of stuff we need to keep in order to represent the hypothesis h grows linearly with the size of the training set.

  • 相关阅读:
    读书笔记2
    实验8 SQLite数据库操作
    实验7 BindService模拟通信
    实验6 在应用程序中播放音频和视频
    实验5 数独游戏界面设计
    网络工程201306114136张文雅实验四
    实验五 操作系统之存储管理
    实验四 主存空间的分配和回收
    进程调度模拟程序
    作业调度算法
  • 原文地址:https://www.cnblogs.com/gghost/p/3286755.html
Copyright © 2011-2022 走看看