1.得到Pattern
上程序,没有什么解释的
bb = tld.bb(:,I); % current bounding box
img = tld.img{I}; % current image
% Check consistency -------------------------------------------------------
pPatt = tldGetPattern(img,bb,tld.model.patchsize); % get current patch
[pConf1,~,pIsin] = tldNN(pPatt,tld); % measure similarity to model
2.确定是否需要学习
上程序,没有什么解释的
if pConf1 < 0.5, disp('Fast change.'); tld.valid(I) = 0; return; end % too fast change of appearance
if var(pPatt) < tld.var, disp('Low variance.'); tld.valid(I) = 0; return; end % too low variance of the patch
if pIsin(3) == 1, disp('In negative data.'); tld.valid(I) = 0; return; end % patch is in negative data
3.产生正样本
正样本数据有两种,一种是Pattern,即pEx,用于计算Conf;另一种是用于检测模块特征向量维数为10,这些数据可以更改
检测模块的模型参数。
overlap = bb_overlap(bb,tld.grid); % measure overlap of the current bounding box with the bounding boxes [pX,pEx] = tldGeneratePositiveData(tld,overlap,img,tld.p_par_update); % generate positive examples from all
pY = ones(1,size(pX,2)); % labels of the positive patches
核心函数为tldGeneratePositiveData,以下对其进行分析
tld.p_par_update是控制产生正要本数据的参数
idxP = find(overlap > 0.6);
对其进行排序后
bbP = tld.grid(:,idxP);
bbP0是overlap值最大的一个,由此得到pattern
pEx = tldGetPattern(im1,bbP0,tld.model.patchsize);
检测模块需要的正特征就是overlap值最大的前10个bb,对其抽取特征,再对其循环num_warps次。每次循环根据
改变图像。
抽取特征的函数是由c写的,具体参考特征检测部分。
pX = [pX fern(5,im1,idxP,0)];
pX为10X100的矩阵;
其im1的范围是由以下代码产生的
bbH = bb_hull(bbP);
cols = bbH(1):bbH(3);
rows = bbH(2):bbH(4);
4.产生负样本
for (int i = 0; i < nTREES; i++) {
int idx = measure_tree_offset(blur,idx_bbox,i);
tPatt[i] = idx;
conf += WEIGHT[i][idx];
}
return conf;
负样本
这个是用于更新检测模块参数的数据,选择的标准就是低overlap值和检测模块判断为正样本的数据
idx = overlap < tld.n_par.overlap & tld.tmp.conf >= 1;
从检测出来的bb中,挑选出重叠度小于阈值的,用于conf生成
overlap = bb_overlap(bb,tld.dt{I}.bb);
nEx = tld.dt{I}.patch(:,overlap < tld.n_par.overlap);
训练模型
fern(2,[pX tld.tmp.patt(:,idx)],[pY zeros(1,sum(idx))],tld.model.thr_fern,2);
% Positive
if y(i) == 1 && conf1 <= tld.model.thr_nn % 0.65
if isnan(isin(2))
tld.pex = x(:,i);
continue;
end
%if isin(2) == size(tld.pex,2)
%tld.pex = [tld.pex x(:,i)];
%else
tld.pex = [tld.pex(:,1:isin(2)) x(:,i) tld.pex(:,isin(2)+1:end)]; % add to model
%end
end
% Negative
if y(i) == 0 && conf1 > 0.5
tld.nex = [tld.nex x(:,i)];
end