zoukankan      html  css  js  c++  java
  • 人工智能学习-第一天

    2018/5/31

    基本术语

    标记:关于样本结果的信息,例如好瓜

    样例:拥有标记信息的示例 和样本有区别

    分类:预测的是离散值,例如好瓜,坏瓜,此类学习任务

    回归:预测的是连续值,例如西瓜成熟度0.95,0.37

    泛化能力:学得模型适用于新样本的能力

    特征向量:因为样本属性可以张成一个属性空间,而每个样本都在这个属性空间里面能被表示,所以我们也用特征向量来表示一个样本

    假设:学得模型对应了关于数据的某种潜在规律,也可以理解为学习模型。

    归纳:从特殊到一般的泛化过程,机器学习就是归纳,从样例中学习。

    演绎:从一般到特殊的特化过程。

    假设空间:就是所有假设组成的空间。意义就是在假设空间搜索最终获得与训练集一致的假设,这就是我们学得的结果

    版本空间:存在多个假设与训练集一致的的假设集合。

    奥卡姆剃刀:若有多个假设与观察一致,则选最简单的那个

    NFL定理(No Free Lunch) 天下没有免费的午餐,换言之,就是没有算法能完美地解决所有问题,尤其是对监督学习而言(例如预测建模)。举例来说,你不能去说神经网络任何情况下都能比决策树更有优势,反之亦然。它们要受很多因素的影响,比如你的数据集的规模或结构。其结果是,在用给定的测试集来评估性能并挑选算法时,你应当根据具体的问题来采用不同的算法。

    归纳偏好:机器学习算法在学习过程中对某种类型假设的偏好。

  • 相关阅读:
    .ascx
    *.ascx *.asax *.aspx.resx *.asax.resx是什么文件
    DNN Learning How to install 1
    LG7881 [Ynoi2006] rmpq【分块,分治】
    LG6783 [Ynoi2008] rrusq【扫描线,KDT】
    UOJ681【UR #22】月球列车【二进制,Trie】
    AGC056E Cheese【概率期望,dp】
    AGC055F Creative Splitting【双射转化,dp】
    CTT2022 游记
    NOIP2021 退役记
  • 原文地址:https://www.cnblogs.com/ggnbnb/p/9119514.html
Copyright © 2011-2022 走看看