zoukankan      html  css  js  c++  java
  • Java数据结构与算法 day12 图

    第12章 图

    本章源码:https://github.com/name365/Java-Data-structure

    图的基本介绍和存储形式

    图基本介绍

    为什么要有图???
    
    前面我们学了线性表和树,线性表局限于一个直接前驱和一个直接后继的关系,树也只能有一个直接前驱也就是父节点。当我们需要表示多对多的关系时,这里我们就用到了图。
    

    图的举例说明

    • 图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。如图:

    在这里插入图片描述
    在这里插入图片描述

    l图的常用概念

    • 顶点(vertex)
    • 边(edge)

    在这里插入图片描述

    • 路径:比如从 D -> C 的路径有
      • D->B->C
      • D->A->B->C
    • 无向图(上图):顶点之间的连接没有方向,比如A-B,即可以是 A-> B 也可以 B->A .
    • 有向图:顶点之间的连接有方向,比如A-B,只能是 A-> B 不能是 B->A .

    在这里插入图片描述

    • 带权图:这种边带权值的图也叫网.

    在这里插入图片描述

    图的表示方式

    • 图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。

    邻接矩阵

     邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1....n个点。
    

    在这里插入图片描述

    邻接表:

    1.邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失.
    2.邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
    

    在这里插入图片描述

    说明:
    1.标号为0的结点的相关联的结点为 1 2 3 4
    2.标号为1的结点的相关联结点为0 43.标号为2的结点相关联的结点为 0 4 5
    4.....
    

    图的创建图解和代码实现

    要求: 代码实现如下图结构.

    在这里插入图片描述

    思路分析  
    (1) 存储顶点String  使用 ArrayList 
    (2) 保存矩阵 int[][] edges 
    

    代码实现如下:

    import java.util.ArrayList;
    import java.util.Arrays;
    
    public class Graph {
    
    	private ArrayList<String> vertexList; // 存储顶点集合
    	private int[][] str; // 存储图对应的邻接矩阵
    	private int numofEdges; // 表示边的数目
    
    	public static void main(String[] args) {
    
    		// 测试图的创建
    		int n = 5; // 结点的个数
    		String Ver[] = { "A", "B", "C", "D", "E" };
    
    		// 创建图对象
    		Graph graph = new Graph(n);
    		// 循环的添加顶点
    		for (String vertex : Ver) {
    			graph.insertVertex(vertex);
    		}
    
    		//添加边
    		//A-B A-C B-C B-D B-E 
    		graph.insertEdge(0, 1, 1); // A-B
    		graph.insertEdge(0, 2, 1); // A-C
    		graph.insertEdge(1, 2, 1); // B-C
    		graph.insertEdge(1, 3, 1); // B-D
    		graph.insertEdge(1, 4, 1); // B-E 
    		
    		//显示邻接矩阵
    		graph.showGraph();
    		
    	}
    
    	// 构造器
    	public Graph(int n) {
    		// 初始化矩阵和vertexList
    		str = new int[n][n];
    		vertexList = new ArrayList<String>(n);
    		numofEdges = 0;
    	}
    
    	// 插入结点
    	public void insertVertex(String vertex) {
    		vertexList.add(vertex);
    	}
    
    	// 添加边
    	/**
    	 * 
    	 * @Description
    	 * @author subei
    	 * @date 2020年6月14日下午6:37:03
    	 * @param v1
    	 *            表示点的下标即第几个顶点 "A"-"B" "A"->0 "B"->1
    	 * @param v2
    	 *            第二个顶点对应的下标
    	 * @param weight
    	 *            表示
    	 */
    	public void insertEdge(int v1, int v2, int weight) {
    		str[v1][v2] = weight;
    		str[v2][v1] = weight;
    		numofEdges++;
    	}
    
    	// 图中常用的方法
    	// 返回结点的个数
    	public int getNumber() {
    		return vertexList.size();
    	}
    
    	// 得到边的个数
    	public int getNumEdg() {
    		return numofEdges;
    	}
    
    	// 返回结点i(下标)对应的值 0->"A" 1->"B" 2->"C"
    	public String getValueByIndex(int i) {
    		return vertexList.get(i);
    	}
    
    	// 返回v1和v2的权值
    	public int getWeight(int v1, int v2) {
    		return str[v1][v2];
    	}
    
    	// 返回结点的个数
    	public int getNumOfVertex() {
    		return vertexList.size();
    	}
    
    	// 显示图对应的矩阵
    	public void showGraph() {
    		for (int[] link : str) {
    			System.err.println(Arrays.toString(link));
    		}
    	}
    
    }
    

    图的深度优先(DFS)算法图解与实现

    图遍历介绍

    所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: (1) (2)

    • 深度优先遍历基本思想

      图的深度优先搜索(Depth First Search)1.深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
      
      2.我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
      
      3.显然,深度优先搜索是一个递归的过程。
      
    深度优先遍历算法步骤:
    1.访问初始结点v,并标记结点v为已访问。
    2.查找结点v的第一个邻接结点w。
    3.若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。
    4.若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。
    5.查找结点v的w邻接结点的下一个邻接结点,转到步骤3

    看一个具体案例分析:

    要求:对下图进行深度优先搜索, 从A 开始遍历。

    在这里插入图片描述

         A   B   C   D   E
    A    0   1   1   0   0
    B    1   0   1   1   1
    C    1   1   0   0   0
    D    0   1   0   0   0 
    E    0   1   0   0   0
    
    //说明
    //(1) 1 表示能够直接连接
    //(2) 0 表示不能直接连接
    

    代码实现如下:

    import java.util.ArrayList;
    import java.util.Arrays;
    
    public class Graph {
    
    	private ArrayList<String> vertexList; // 存储顶点集合
    	private int[][] str; // 存储图对应的邻接矩阵
    	private int numofEdges; // 表示边的数目
    	// 定义一个数组boolean[], 记录某个结点是否被访问
    	private boolean[] isNut;
    
    	public static void main(String[] args) {
    
    		// 测试图的创建
    		int n = 5; // 结点的个数
    		String Ver[] = { "A", "B", "C", "D", "E" };
    
    		// 创建图对象
    		Graph graph = new Graph(n);
    		// 循环的添加顶点
    		for (String vertex : Ver) {
    			graph.insertVertex(vertex);
    		}
    
    		// 添加边
    		// A-B A-C B-C B-D B-E
    		graph.insertEdge(0, 1, 1); // A-B
    		graph.insertEdge(0, 2, 1); // A-C
    		graph.insertEdge(1, 2, 1); // B-C
    		graph.insertEdge(1, 3, 1); // B-D
    		graph.insertEdge(1, 4, 1); // B-E
    
    		// 显示邻接矩阵
    		graph.showGraph();
    
    		//测试dfs
    		System.out.println("深度遍历:");
    		graph.dfs();	//A->B->C->D->E->
    		
    	}
    
    	// 构造器
    	public Graph(int n) {
    		// 初始化矩阵和vertexList
    		str = new int[n][n];
    		vertexList = new ArrayList<String>(n);
    		numofEdges = 0;
    		isNut = new boolean[5];
    	}
    
    	// 插入结点
    	public void insertVertex(String vertex) {
    		vertexList.add(vertex);
    	}
    
    	// 添加边
    	/**
    	 * 
    	 * @Description
    	 * @author subei
    	 * @date 2020年6月14日下午6:37:03
    	 * @param v1
    	 *            表示点的下标即第几个顶点 "A"-"B" "A"->0 "B"->1
    	 * @param v2
    	 *            第二个顶点对应的下标
    	 * @param weight
    	 *            表示
    	 */
    	public void insertEdge(int v1, int v2, int weight) {
    		str[v1][v2] = weight;
    		str[v2][v1] = weight;
    		numofEdges++;
    	}
    
    	// 图中常用的方法
    	// 返回结点的个数
    	public int getNumber() {
    		return vertexList.size();
    	}
    
    	// 得到边的个数
    	public int getNumEdg() {
    		return numofEdges;
    	}
    
    	// 返回结点i(下标)对应的值 0->"A" 1->"B" 2->"C"
    	public String getValueByIndex(int i) {
    		return vertexList.get(i);
    	}
    
    	// 返回v1和v2的权值
    	public int getWeight(int v1, int v2) {
    		return str[v1][v2];
    	}
    
    	// 返回结点的个数
    	public int getNumOfVertex() {
    		return vertexList.size();
    	}
    
    	// 显示图对应的矩阵
    	public void showGraph() {
    		for (int[] link : str) {
    			System.err.println(Arrays.toString(link));
    		}
    	}
    
    	// 得到第一个邻接结点的下标 w
    	/**
    	 * 
    	 * @Description
    	 * @author subei
    	 * @date 2020年6月14日下午8:03:22
    	 * @param index
    	 * @return 如果存在就返回对应的下标,否则返回-1
    	 */
    	public int getFirstNeigh(int index) {
    		for (int j = 0; j < vertexList.size(); j++) {
    			if (str[index][j] > 0) {
    				return j;
    			}
    		}
    		return -1;
    	}
    
    	// 根据前一个邻接结点的下标来获取下一个邻接结点
    	public int getNextNeigh(int v1, int v2) {
    		for (int j = v2 + 1; j < vertexList.size(); j++) {
    			if (str[v1][j] > 0) {
    				return j;
    			}
    		}
    		return -1;
    	}
    
    	// 深度优先算法
    	public void dfs(boolean[] isNut, int i) {
    		// 首先我们访问该结点,输出
    		System.out.print(getValueByIndex(i) + "->");
    		// 将结点设置为已经访问
    		isNut[i] = true;
    		// 查找结点i的第一个邻接结点w
    		int w = getFirstNeigh(i);
    		while (w != -1) {// 说明找到了
    			if (!isNut[w]) {
    				dfs(isNut, w);
    			}
    			// 如果w结点已经被访问过
    			w = getNextNeigh(i, w);
    		}
    	}
    
    	//对DFS进行重载,遍历所有的结点,并进行DFS
    	public void dfs() {
    		isNut = new boolean[vertexList.size()];
    		//遍历所有的结点,进行dfs[回溯]
    		for(int i = 0; i < getNumOfVertex(); i++) {
    			if(!isNut[i]) {
    				dfs(isNut, i);
    			}
    		}
    	}
    	
    }
    

    图的广度优先(BFS)算法图解

    广度优先遍历基本思想

    图的广度优先搜索(Broad First Search) 。

    类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点

    广度优先遍历算法步骤:
    1.访问初始结点v并标记结点v为已访问。
    2.结点v入队列
    3.当队列非空时,继续执行,否则算法结束。
    4.出队列,取得队头结点u。
    5.查找结点u的第一个邻接结点w。
    6.若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
    	6.1 若结点w尚未被访问,则访问结点w并标记为已访问。 
    	6.2 结点w入队列 
    	6.3 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6

    在这里插入图片描述

         A   B   C   D   E
    A    0   1   1   0   0
    B    1   0   1   1   1
    C    1   1   0   0   0
    D    0   1   0   0   0 
    E    0   1   0   0   0
    
    //说明
    //(1) 1 表示能够直接连接
    //(2) 0 表示不能直接连接
    

    代码实现如下:

    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.LinkedList;
    
    public class Graph {
    
    	private ArrayList<String> vertexList; // 存储顶点集合
    	private int[][] str; // 存储图对应的邻接矩阵
    	private int numofEdges; // 表示边的数目
    	// 定义一个数组boolean[], 记录某个结点是否被访问
    	private boolean[] isNut;
    
    	public static void main(String[] args) {
    
    		// 测试图的创建
    		int n = 5; // 结点的个数
    		String Ver[] = { "A", "B", "C", "D", "E" };
    
    		// 创建图对象
    		Graph graph = new Graph(n);
    		// 循环的添加顶点
    		for (String vertex : Ver) {
    			graph.insertVertex(vertex);
    		}
    
    		// 添加边
    		// A-B A-C B-C B-D B-E
    		graph.insertEdge(0, 1, 1); // A-B
    		graph.insertEdge(0, 2, 1); // A-C
    		graph.insertEdge(1, 2, 1); // B-C
    		graph.insertEdge(1, 3, 1); // B-D
    		graph.insertEdge(1, 4, 1); // B-E
    
    		// 显示邻接矩阵
    		graph.showGraph();
    
    		//测试bfs
    		System.out.println("广度遍历:");
    		graph.bfs();	//A=>B=>C=>D=>E=>
    		
    	}
    
    	// 构造器
    	public Graph(int n) {
    		// 初始化矩阵和vertexList
    		str = new int[n][n];
    		vertexList = new ArrayList<String>(n);
    		numofEdges = 0;
    		isNut = new boolean[5];
    	}
    
    	// 插入结点
    	public void insertVertex(String vertex) {
    		vertexList.add(vertex);
    	}
    
    	// 添加边
    	/**
    	 * 
    	 * @Description
    	 * @author subei
    	 * @date 2020年6月14日下午6:37:03
    	 * @param v1
    	 *            表示点的下标即第几个顶点 "A"-"B" "A"->0 "B"->1
    	 * @param v2
    	 *            第二个顶点对应的下标
    	 * @param weight
    	 *            表示
    	 */
    	public void insertEdge(int v1, int v2, int weight) {
    		str[v1][v2] = weight;
    		str[v2][v1] = weight;
    		numofEdges++;
    	}
    
    	// 图中常用的方法
    	// 返回结点的个数
    	public int getNumber() {
    		return vertexList.size();
    	}
    
    	// 得到边的个数
    	public int getNumEdg() {
    		return numofEdges;
    	}
    
    	// 返回结点i(下标)对应的值 0->"A" 1->"B" 2->"C"
    	public String getValueByIndex(int i) {
    		return vertexList.get(i);
    	}
    
    	// 返回v1和v2的权值
    	public int getWeight(int v1, int v2) {
    		return str[v1][v2];
    	}
    
    	// 返回结点的个数
    	public int getNumOfVertex() {
    		return vertexList.size();
    	}
    
    	// 显示图对应的矩阵
    	public void showGraph() {
    		for (int[] link : str) {
    			System.err.println(Arrays.toString(link));
    		}
    	}
    
    	// 得到第一个邻接结点的下标 w
    	/**
    	 * 
    	 * @Description
    	 * @author subei
    	 * @date 2020年6月14日下午8:03:22
    	 * @param index
    	 * @return 如果存在就返回对应的下标,否则返回-1
    	 */
    	public int getFirstNeigh(int index) {
    		for (int j = 0; j < vertexList.size(); j++) {
    			if (str[index][j] > 0) {
    				return j;
    			}
    		}
    		return -1;
    	}
    
    	// 根据前一个邻接结点的下标来获取下一个邻接结点
    	public int getNextNeigh(int v1, int v2) {
    		for (int j = v2 + 1; j < vertexList.size(); j++) {
    			if (str[v1][j] > 0) {
    				return j;
    			}
    		}
    		return -1;
    	}
    
    	// 广度优先算法
    	public void bfs(boolean[] isNut, int i) {
    		int u ; // 表示队列的头结点对应下标
    		int w ; // 邻接结点w
    		//队列,记录结点访问的顺序
    		LinkedList<Integer> queue = new LinkedList<Integer>();
    		// 访问结点,输出结点信息
    		System.out.print(getValueByIndex(i) + "=>");
    		// 标记为已访问
    		isNut[i] = true;
    		// 将结点加入队列
    		queue.addLast(i);
    		while( !queue.isEmpty()) {
    			// 取出队列的头结点下标
    			u = (Integer)queue.removeFirst();
    			// 得到第一个邻接结点的下标 w 
    			w = getFirstNeigh(u);
    			while(w != -1) {//找到了
    				// 是否访问过
    				if(!isNut[w]) {
    					System.out.print(getValueByIndex(w) + "=>");
    					// 标记已经访问
    					isNut[w] = true;
    					// 入队
    					queue.addLast(w);
    				}
    				// 以u为前驱点,找w后面的下一个邻结点
    				w = getNextNeigh(u, w); // 体现广度优先
    			}
    		}
    	}
    
    	//对BFS进行重载,遍历所有的结点,并进行BFS
    	public void bfs() {
    		isNut = new boolean[vertexList.size()];
    		for(int i = 0; i < getNumOfVertex(); i++) {
    			if(!isNut[i]) {
    				bfs(isNut, i);
    			}
    		}
    	}	
    }
    

    图的DFS和BFS比较

    在这里插入图片描述

    graph.insertEdge(0, 1, 1);
    graph.insertEdge(0, 2, 1);
    graph.insertEdge(1, 3, 1);
    graph.insertEdge(1, 4, 1);
    graph.insertEdge(3, 7, 1);
    graph.insertEdge(4, 7, 1);
    graph.insertEdge(2, 5, 1);
    graph.insertEdge(2, 6, 1);
    graph.insertEdge(5, 6, 1);
    
    深度优先遍历顺序为 1->2->4->8->5->3->6->7
    广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8 
    

    代码实现如下:

    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.LinkedList;
    
    public class Graph {
    
    	private ArrayList<String> vertexList; // 存储顶点集合
    	private int[][] str; // 存储图对应的邻接矩阵
    	private int numofEdges; // 表示边的数目
    	// 定义一个数组boolean[], 记录某个结点是否被访问
    	private boolean[] isNut;
    
    	public static void main(String[] args) {
    
    		// 测试图的创建
    		int n = 8; // 结点的个数
    		String Ver[] = {"1", "2", "3", "4", "5", "6", "7", "8"};
    
    		// 创建图对象
    		Graph graph = new Graph(n);
    		// 循环的添加顶点
    		for (String vertex : Ver) {
    			graph.insertVertex(vertex);
    		}
    
    		// 添加边
    		graph.insertEdge(0, 1, 1);
    		graph.insertEdge(0, 2, 1);
    		graph.insertEdge(1, 3, 1);
    		graph.insertEdge(1, 4, 1);
    		graph.insertEdge(3, 7, 1);
    		graph.insertEdge(4, 7, 1);
    		graph.insertEdge(2, 5, 1);
    		graph.insertEdge(2, 6, 1);
    		graph.insertEdge(5, 6, 1);
    
    		// 显示邻接矩阵
    		graph.showGraph();
    
    		// 测试dfs
    		System.out.println("深度遍历:");
    		graph.dfs(); // 1->2->4->8->5->3->6->7->
    
    		// 测试bfs
    		System.out.println("广度遍历:");
    		graph.bfs(); // 1=>2=>3=>4=>5=>6=>7=>8=>
    
    	}
    
    	// 构造器
    	public Graph(int n) {
    		// 初始化矩阵和vertexList
    		str = new int[n][n];
    		vertexList = new ArrayList<String>(n);
    		numofEdges = 0;
    		isNut = new boolean[5];
    	}
    
    	// 插入结点
    	public void insertVertex(String vertex) {
    		vertexList.add(vertex);
    	}
    
    	// 添加边
    	/**
    	 * 
    	 * @Description
    	 * @author subei
    	 * @date 2020年6月14日下午6:37:03
    	 * @param v1
    	 *            表示点的下标即第几个顶点 "A"-"B" "A"->0 "B"->1
    	 * @param v2
    	 *            第二个顶点对应的下标
    	 * @param weight
    	 *            表示
    	 */
    	public void insertEdge(int v1, int v2, int weight) {
    		str[v1][v2] = weight;
    		str[v2][v1] = weight;
    		numofEdges++;
    	}
    
    	// 图中常用的方法
    	// 返回结点的个数
    	public int getNumber() {
    		return vertexList.size();
    	}
    
    	// 得到边的个数
    	public int getNumEdg() {
    		return numofEdges;
    	}
    
    	// 返回结点i(下标)对应的值 0->"A" 1->"B" 2->"C"
    	public String getValueByIndex(int i) {
    		return vertexList.get(i);
    	}
    
    	// 返回v1和v2的权值
    	public int getWeight(int v1, int v2) {
    		return str[v1][v2];
    	}
    
    	// 返回结点的个数
    	public int getNumOfVertex() {
    		return vertexList.size();
    	}
    
    	// 显示图对应的矩阵
    	public void showGraph() {
    		for (int[] link : str) {
    			System.err.println(Arrays.toString(link));
    		}
    	}
    
    	// 得到第一个邻接结点的下标 w
    	/**
    	 * 
    	 * @Description
    	 * @author subei
    	 * @date 2020年6月14日下午8:03:22
    	 * @param index
    	 * @return 如果存在就返回对应的下标,否则返回-1
    	 */
    	public int getFirstNeigh(int index) {
    		for (int j = 0; j < vertexList.size(); j++) {
    			if (str[index][j] > 0) {
    				return j;
    			}
    		}
    		return -1;
    	}
    
    	// 根据前一个邻接结点的下标来获取下一个邻接结点
    	public int getNextNeigh(int v1, int v2) {
    		for (int j = v2 + 1; j < vertexList.size(); j++) {
    			if (str[v1][j] > 0) {
    				return j;
    			}
    		}
    		return -1;
    	}
    
    	// 深度优先算法
    	public void dfs(boolean[] isNut, int i) {
    		// 首先我们访问该结点,输出
    		System.out.print(getValueByIndex(i) + "->");
    		// 将结点设置为已经访问
    		isNut[i] = true;
    		// 查找结点i的第一个邻接结点w
    		int w = getFirstNeigh(i);
    		while (w != -1) {// 说明找到了
    			if (!isNut[w]) {
    				dfs(isNut, w);
    			}
    			// 如果w结点已经被访问过
    			w = getNextNeigh(i, w);
    		}
    	}
    
    	// 对DFS进行重载,遍历所有的结点,并进行DFS
    	public void dfs() {
    		isNut = new boolean[vertexList.size()];
    		// 遍历所有的结点,进行dfs[回溯]
    		for (int i = 0; i < getNumOfVertex(); i++) {
    			if (!isNut[i]) {
    				dfs(isNut, i);
    			}
    		}
    	}
    
    	// 广度优先算法
    	public void bfs(boolean[] isNut, int i) {
    		int u; // 表示队列的头结点对应下标
    		int w; // 邻接结点w
    		// 队列,记录结点访问的顺序
    		LinkedList<Integer> queue = new LinkedList<Integer>();
    		// 访问结点,输出结点信息
    		System.out.print(getValueByIndex(i) + "=>");
    		// 标记为已访问
    		isNut[i] = true;
    		// 将结点加入队列
    		queue.addLast(i);
    		while (!queue.isEmpty()) {
    			// 取出队列的头结点下标
    			u = (Integer) queue.removeFirst();
    			// 得到第一个邻接结点的下标 w
    			w = getFirstNeigh(u);
    			while (w != -1) {// 找到了
    				// 是否访问过
    				if (!isNut[w]) {
    					System.out.print(getValueByIndex(w) + "=>");
    					// 标记已经访问
    					isNut[w] = true;
    					// 入队
    					queue.addLast(w);
    				}
    				// 以u为前驱点,找w后面的下一个邻结点
    				w = getNextNeigh(u, w); // 体现广度优先
    			}
    		}
    	}
    
    	// 对BFS进行重载,遍历所有的结点,并进行BFS
    	public void bfs() {
    		isNut = new boolean[vertexList.size()];
    		for (int i = 0; i < getNumOfVertex(); i++) {
    			if (!isNut[i]) {
    				bfs(isNut, i);
    			}
    		}
    	}
    }
    

    本章思维导图

    在这里插入图片描述

    欢迎查阅
  • 相关阅读:
    编辑距离算法详解:Levenshtein Distance算法
    直方图均衡化
    Dev之ChartControl控件(二)— 绘制多重坐标图形
    SVM支持向量机算法
    Dev之ChartControl控件(一)
    KNN邻近分类算法
    广州.NET微软技术俱乐部提技术问题的正确方式
    .NET微软技术 开源项目建设
    广州.NET微软技术俱乐部与其他技术群的区别
    广州.NET微软技术俱乐部 微信群有用信息集锦
  • 原文地址:https://www.cnblogs.com/gh110/p/13167383.html
Copyright © 2011-2022 走看看