zoukankan      html  css  js  c++  java
  • HashMap源码分析(put/get)

    一、前言

      1.本文基于JDK1.8源码分析,会贴出涉及的相关数据结构及源码。

      2.文中只涉及hashmap的put/get方法,代码理解附在注释上(直接看代码更清晰)。

      3.JDK1.8中,HashMap采用位桶+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树。

    二、数据结构

      1.单向链表

    //单向链表,实现了Map.Entry接口
    static class Node<K,V> implements Map.Entry<K,V> {
            final int hash;
            final K key;
            V value;
            Node<K,V> next;
            
            Node(int hash, K key, V value, Node<K,V> next) {
                this.hash = hash;
                this.key = key;
                this.value = value;
                this.next = next;
            }
    
            public final K getKey()        { return key; }
            public final V getValue()      { return value; }
            public final String toString() { return key + "=" + value; }
    
            public final int hashCode() {
                return Objects.hashCode(key) ^ Objects.hashCode(value);
            }
    
            public final V setValue(V newValue) {
                V oldValue = value;
                value = newValue;
                return oldValue;
            }
            //判断两个node是否相等,key与value均相等则返回true
            public final boolean equals(Object o) {
                if (o == this)
                    return true;
                if (o instanceof Map.Entry) {
                    Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                    if (Objects.equals(key, e.getKey()) &&
                        Objects.equals(value, e.getValue()))
                        return true;
                }
                return false;
            }
        }

      2.红黑树

    //红黑树(太多了,放一些属性及构造函数)
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
            TreeNode<K,V> parent;  // red-black tree links
            TreeNode<K,V> left;
            TreeNode<K,V> right;
            TreeNode<K,V> prev;    // needed to unlink next upon deletion
            boolean red;
            TreeNode(int hash, K key, V val, Node<K,V> next) {
                super(hash, key, val, next);
            }
    }

      3.位桶

    transient Node<K,V>[] table;

     三、主要属性

    public class HashMap<K,V> extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable {
    
        private static final long serialVersionUID = 362498820763181265L;
    
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
        static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量
    
        static final float DEFAULT_LOAD_FACTOR = 0.75f;//填充比
    
        //当add一个元素到某个位桶,其链表长度达到8时将链表转换为红黑树
        static final int TREEIFY_THRESHOLD = 8;
    
        static final int UNTREEIFY_THRESHOLD = 6;
    
        static final int MIN_TREEIFY_CAPACITY = 64;
    
        transient Node[] table;//存储元素的数组
    
        transient Set> entrySet;
    
        transient int size;//存放元素的个数
    
        transient int modCount;//被修改的次数fast-fail机制
    
        int threshold;//临界值 当实际大小(容量*填充比)超过临界值时,会进行扩容
    
        final float loadFactor;//填充比(......后面略)

    关于fast-fail可以看这篇https://blog.csdn.net/zymx14/article/details/78394464

    四、put/get

      1.get方法

    static final int hash(Object key) {
            int h;
            //增加随机度
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
        }
    public V get(Object key) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        } 
    final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            //hash & length-1 定位数组下标
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
                //检查首节点,hash与key均相等则返回
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                if ((e = first.next) != null) {
                    //首节点是树节点,则hashmap是采用位桶+红黑树结构,调用TreeNode.getTreeNode(hash,key),遍历红黑树
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                    //链表结构查找
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            return null;
        }

      2.put方法

    public V put(K key, V value) {
            return putVal(hash(key), key, value, false, true);
        }
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            //如果tab为空或长度为0则重新分配容器大小
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
            (n-1) & hash找到put位置,槽为空则直接put成为首节点
            if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);
            else {
                Node<K,V> e; K k;
                //第一个节点的hash值与要加入的hash值相等,key也相等
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                //第一个节点是树节点,即属于红黑树冲突处理
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                else {
                    //链表冲突处理
                    //遍历链表  
                    for (int binCount = 0; ; ++binCount) {
                        //e为空,表示到表尾也没找到相同节点,则新建节点
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);
                            //判断新增节点后,链表长度是否到达阈值,到达则将链表转为红黑树
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                        //判断节点是否相同
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                //更新hash与key均相同节点的value值
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
        }        

    五、结语

      本文主要记录hashmap源码学习过程,只针对put/get方向性理解,有错误请指正,一起学习一起进步。

  • 相关阅读:
    js的BOM对象完全解析
    转:JavaScript中的this陷阱的最全收集
    转载:冷门js技巧
    MVVM的架构设计与团队协作 with StoryBoard
    ReactiveCocoa & FRP & MVVM
    ReactiveCocoa的冷信号与热信号 探讨
    Git本地项目上传 & SourceTree & GitHub 简单使用
    Monad / Functor / Applicative 浅析
    map & flatMap 浅析
    Swift -> Let & Var 背后编程模式 探讨
  • 原文地址:https://www.cnblogs.com/ghoster/p/12613104.html
Copyright © 2011-2022 走看看