zoukankan      html  css  js  c++  java
  • 应用开源软件去掉影像中的云

    参考《Open Source Geospatial Tools Applications in Earth Observation》—Chapter 17 Case Study on Multispectral Land Cover Classification


    Depending on the time of the year and the location on Earth, the satellite image
    scenes can contain some clouds. The images used within this case study contain

    some cloud cover. Clouds directly affect image quality and can severely hamper the

    image analysis and classification. To obtain a scene with minimal clouds, we combine

    the downloaded scenes and create a “cloud free” composite. If you are using your own

    satellite imagery acquired for another location and it is cloud free than you can skip

    the next processing step. The BQA dataset is in a bit-packed format2 and contains

    information on water and clouds. This means we need to decode the information

    in order to obtain, for instance, a cloud mask. More information on the bit-packing

    encoding scheme is explained in Sect. 14.3, where we also implement a tool to create

    a cloud mask from the BQA dataset. Alternatively, you can use the official tool, the

    L-LDOPE Toolbelt, that is provided by the USGS.3 As an example, we create a cloud

    mask with the tool bqa2cloud from Sect. 14.3:


    bqa2 cloud -i LC 82070232013160 LGN 00_ BQA .TIF -o LC 82070232013160 LGN 00_ CLD . TIF
    bqa 2 cloud -i LC 82070232013192 LGN 00_ BQA . TIF -o LC 82070232013192 LGN 00_ CLD . TIF


    We then stack all bands into a single multi-band raster dataset in GeoTIFF format
    using the utility gdal_merge.py. The panchromatic band contains little extra
    spectral information and the thermal bands have been acquired with a coarser spatial
    resolution. Therefore, we do not include bands 8, 10 and 11.

    gdal_ merge.py -o LC82070232013160LGN00_ merge.tif -of GTiff -ps
    → 30 30 - separate -co INTERLEAVE = BAND -co COMPRESS = LZW
    → LC82070232013160LGN00_B1.TIF LC82070232013160 LGN00_ B2.TIF
    → LC82070232013160LGN00_B3.TIF LC82070232013160 LGN00_ B4.TIF
    → LC82070232013160LGN00_B5.TIF LC82070232013160 LGN00_ B6.TIF
    → LC82070232013160LGN00_B7.TIF LC82070232013160 LGN00_ B9.TIF
    → LC82070232013160LGN00_CLD.TIF

    //

    -o LC82070232013160LGN00_merge.tif
          Name of the output multi-band raster dataset.
    -of GTiff
          We explicitly set the GeoTIFF image format for the output (not required here as this is the default).
    -ps 30 30
         Set a common spatial resolution for all inputs. Most bands are already at this resolution, but the panchromatic band needs to be resampled from 15 to 30 m.
    -separate
          Place each input file into a separate stacked band.
    -co INTERLEAVE=BAND
         Creation option for band sequential encoding (see Sect. 3.5).
    -co COMPRESS=LZW
         Creation option for LZW compressed output (see Sect. 5.5.4).

    To create the cloud free composite in Fig. 17.2c based on the two multi-band
    raster datasets in Fig. 17.2a, b, we can use the utility pkcomposite from pktools
    (see Sect. 12.2).

    pkcomposite -i LC82070232013160LGN00. tif -i
    → LC82070232013192LGN00.tif -o LC82070232013_ composite. tif
    → -bndnodata 8 -srcnodata 1 -dstnodata 0 -cr maxndvi -cb 3 -cb 4

    //

    -i LC82070232013160LGN00.tif -i ...
          Sequence of input raster datasets.
    -o LC82070232013_composite.tif
         Name of the output composite based on the two input datasets. myinline-bndnodata 8 Index of the cloud band defining nodata values in the input raster datasets (9th band as the index starts from 0).
    -srcnodata 1
         Value indicating nodata, i.e. cloudy values in this case.
    -dstnodata 0
         Value written in output raster dataset in case of nodata (i.e. if both scenes are cloudy).
    -cr maxndvi
         In case more than one input is cloud free, we select the pixel with the maximum NDVI value.
    -cb 3 -cb 4
        The composite bands: the respective indices for the red and near infrared spectral bands in the multi-band input raster to calculate the NDVI on the fly (see Table 17.1)
  • 相关阅读:
    号称简明实用的django上手教程
    转先验概率、最大似然估计、贝叶斯估计、最大后验概率
    转基于概率的矩阵分解原理详解(PMF)
    转浅谈矩阵分解在推荐系统中的应用
    转推荐算法——基于矩阵分解的推荐算法
    代码生成器的需求
    兼容性的设计要求
    API设计的需求
    有关表单的需求梳理
    element-ui table 点击分页table滚到顶部
  • 原文地址:https://www.cnblogs.com/gispathfinder/p/12021109.html
Copyright © 2011-2022 走看看