题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式)。
方法是这样的,由于Nim博弈必胜的条件是所有数的抑或值不为0,证明见 点击 ,所以答案就转化为原序列有多少个区间的亦或值为0,用n*(n+1) / 2 减去这个值就可以了。
而求有多少个区间的亦或值为0,实际上就是求对于亦或值的前缀nim[i],满足nim[i] == nim[j] 的对数,这时只要对nim数组排序就可以算了
详见代码:
1 #include <map> 2 #include <set> 3 #include <stack> 4 #include <queue> 5 #include <cmath> 6 #include <ctime> 7 #include <vector> 8 #include <cstdio> 9 #include <cctype> 10 #include <cstring> 11 #include <cstdlib> 12 #include <iostream> 13 #include <algorithm> 14 using namespace std; 15 #define INF 0x3f3f3f3f 16 #define inf (-((LL)1<<40)) 17 #define lson k<<1, L, mid 18 #define rson k<<1|1, mid+1, R 19 #define mem0(a) memset(a,0,sizeof(a)) 20 #define mem1(a) memset(a,-1,sizeof(a)) 21 #define mem(a, b) memset(a, b, sizeof(a)) 22 #define FIN freopen("in.txt", "r", stdin) 23 #define FOUT freopen("out.txt", "w", stdout) 24 #define rep(i, a, b) for(int i = a; i <= b; i ++) 25 26 template<class T> T CMP_MIN(T a, T b) { return a < b; } 27 template<class T> T CMP_MAX(T a, T b) { return a > b; } 28 template<class T> T MAX(T a, T b) { return a > b ? a : b; } 29 template<class T> T MIN(T a, T b) { return a < b ? a : b; } 30 template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; } 31 template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } 32 33 //typedef __int64 LL; 34 typedef long long LL; 35 const int MAXN = 110000; 36 const int MAXM = 20010; 37 const double eps = 1e-4; 38 //LL MOD = 987654321; 39 40 int n, a[MAXN], x, s, w, T; 41 42 int main() 43 { 44 while(~scanf("%d", &T)) while(T--) { 45 cin >> n >> s >> w; 46 LL ans = (LL)n * (n + 1) / 2; 47 int g = s; 48 rep (i, 1, n) { 49 x = g; 50 if( x == 0 ) { x = g = w; } 51 if( g%2 == 0 ) { g = (g/2); } 52 else { g = (g/2) ^ w; } 53 a[i] = a[i - 1] ^ x; 54 if(a[i] == 0) ans --; 55 } 56 sort(a + 1, a + n + 1); 57 int num = 1; 58 rep (i, 2, n) { 59 if(a[i] == a[i - 1]) { 60 ans -= num; 61 num++; 62 } 63 else num = 1; 64 } 65 cout << ans << endl; 66 } 67 return 0; 68 }