zoukankan      html  css  js  c++  java
  • tensorflow实现一个神经网络简单CNN网络

    本例子用到了minst数据库,通过训练CNN网络,实现手写数字的预测。

    首先先把数据集读取到程序中(MNIST数据集大约12MB,如果没在文件夹中找到就会自动下载):

    mnist = input_data.read_data_sets('data/MNIST_data', one_hot=True)

    Extracting data/MNIST/train-images-idx3-ubyte.gz
    Extracting data/MNIST/train-labels-idx1-ubyte.gz
    Extracting data/MNIST/t10k-images-idx3-ubyte.gz
    Extracting data/MNIST/t10k-labels-idx1-ubyte.gz

    print("Size of:")
    print("- Training-set:		{}".format(len(mnist.train.labels)))
    print("- Test-set:		{}".format(len(mnist.test.labels)))
    print("- Validation-set:	{}".format(len(mnist.validation.labels)))
    Size of:
    - Training-set: 55000
    - Test-set: 10000

    - Validation-set: 5000


    然后开始定义输入数据,利用占位符

    • # define placeholder for inputs to network
      xs = tf.placeholder(tf.float32, [None, 784]) # 28x28
      ys = tf.placeholder(tf.float32, [None, 10])
      keep_prob = tf.placeholder(tf.float32)
      x_image = tf.reshape(xs, [-1, 28, 28, 1])
      # print(x_image.shape)  # [n_samples, 28,28,1]

    minst数据集中是28*28大小的图片,784就是一张展平的图片(28*28=784)。None表示输入图片的数量不定。类别是0-9总共10个类别,并定义了后面dropout的占位符。x_image又把展平的图片reshape成了28*28*1的形状,因为是灰色图片,所以通道是1.

    然后定义几个函数来方便构造网络:

    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    def conv2d(x, W):
        # stride [1, x_movement, y_movement, 1]
        # Must have strides[0] = strides[3] = 1
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
        # stride [1, x_movement, y_movement, 1]
        return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

    truncated_normal函数使得W呈正态分布,标准差为0.1。初始化b为0.1。定义卷积层步数为1,并且周围补0。池化层采用kernel大小为2*2,步数也为2,周围补0。

    然后定义CNN神经网络:

    • ## conv1 layer ##
      W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
      b_conv1 = bias_variable([32])
      h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
      h_pool1 = max_pool_2x2(h_conv1)                                         # output size 14x14x32
      
      ## conv2 layer ##
      W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
      b_conv2 = bias_variable([64])
      h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
      h_pool2 = max_pool_2x2(h_conv2)                                         # output size 7x7x64
      
      ## func1 layer ##
      W_fc1 = weight_variable([7*7*64, 1024])
      b_fc1 = bias_variable([1024])
      # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
      h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
      h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
      h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
      
      ## func2 layer ##
      W_fc2 = weight_variable([1024, 10])
      b_fc2 = bias_variable([10])
      prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

    最后计算损失,使得损失最小。

    # the error between prediction and real data
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1]))       # loss
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

    reduce_mean用于计算均值,用法如下: 
    tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)

    Computes the mean of elements across dimensions of a tensor.

    # 'x' is [[1., 1.]
    #         [2., 2.]]
    tf.reduce_mean(x) ==> 1.5
    tf.reduce_mean(x, 0) ==> [1.5, 1.5]
    tf.reduce_mean(x, 1) ==> [1.,  2.]

    完整代码如下:

    from __future__ import print_function
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    # number 1 to 10 data
    mnist = input_data.read_data_sets('data/MNIST_data', one_hot=True)
    def compute_accuracy(v_xs, v_ys):
        global prediction
        y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
        correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
        return result
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    def conv2d(x, W):
        # stride [1, x_movement, y_movement, 1]
        # Must have strides[0] = strides[3] = 1
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
        # stride [1, x_movement, y_movement, 1]
        return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    
    # define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 784]) # 28x28
    ys = tf.placeholder(tf.float32, [None, 10])
    keep_prob = tf.placeholder(tf.float32)
    x_image = tf.reshape(xs, [-1, 28, 28, 1])
    # print(x_image.shape)  # [n_samples, 28,28,1]
    
    ## conv1 layer ##
    W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
    h_pool1 = max_pool_2x2(h_conv1)                                         # output size 14x14x32
    
    ## conv2 layer ##
    W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
    h_pool2 = max_pool_2x2(h_conv2)                                         # output size 7x7x64
    
    ## func1 layer ##
    W_fc1 = weight_variable([7*7*64, 1024])
    b_fc1 = bias_variable([1024])
    # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    ## func2 layer ##
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    
    # the error between prediction and real data
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                                  reduction_indices=[1]))       # loss
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    sess = tf.Session()
    # important step
    sess.run(tf.initialize_all_variables())
    
    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
        if i % 50 == 0:
            print(compute_accuracy(
                mnist.test.images, mnist.test.labels))

  • 相关阅读:
    2017-9-8-Linux下VNC server开启&图形界面显示
    2017-9-8-RaspberryPi安装过程
    2017-9-7-Linux Mint TFTP服务安装开启
    2017-9-7-第一篇博客
    面试回答优缺点问题
    多层板的层叠和压合结构
    磁珠和电感
    关于TVS、ESD、稳压二极管、压敏电阻
    STM8硬件设计注意事项
    根据电路板画出电路原理图的方法
  • 原文地址:https://www.cnblogs.com/gmhappy/p/9472403.html
Copyright © 2011-2022 走看看