zoukankan      html  css  js  c++  java
  • 基于谷歌开源的TensorFlow Object Detection API视频物体识别系统搭建自己的应用(一)

    基于上篇安装运行谷歌开源的TensorFlow Object Detection API视频物体识别系统,搭建自己的应用。

    替换测试图片

    分析源码:


    官方测试图片放置在test_images目录下,名称格式为image{}.jpg(image+数字格式),循环两张(image1.jpg、image2.jpg),替换自己的测试图片只需删除原test_images目录的图片,将自己的图片改为image{}.jpg格式,如图片超出两张则修改range(1,?)即可。

    替换模型

    分析源码:


    模型说明地址,如下图选择你需要的模型进行下载:


    将源代码的MODEL_NAME替换成你需要的模型即可,注意加上时间戳


    整合到自己的PYTHON项目

    新建PYTHON项目,项目名称任意,目录结果如下:


    将上篇已编译的整个object_detection目录拷贝到object_detectionobject_detection下,

    新建test_images存储测试图片,将已编译的object_detection/data目录拷贝到object_detection下,

    将已下载的模型ssd_mobilenet_v2_coco_2018_03_29.tar.gz拷贝到object_detection下,

    新建ImageTest.py。

    废话说了这么多了,开始上代码:

    import numpy as np
    import os
    import six.moves.urllib as urllib
    import sys
    import tarfile
    import tensorflow as tf
    import zipfile
    
    from collections import defaultdict
    from io import StringIO
    from matplotlib import pyplot as plt
    from PIL import Image
    
    # This is needed since the notebook is stored in the object_detection folder.
    sys.path.append("..")
    from object_detection.utils import ops as utils_ops
    
    if tf.__version__ < '1.4.0':
        raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
      
    # This is needed to display the images.
    from object_detection.utils import label_map_util
    
    from object_detection.utils import visualization_utils as vis_util
    
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    ##Model preparation##
    
    # What model to download.
    MODEL_NAME = 'ssd_mobilenet_v2_coco_2018_03_29'
    MODEL_FILE = MODEL_NAME + '.tar.gz'
    DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
    
    # Path to frozen detection graph. This is the actual model that is used for the object detection.
    PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
    
    # List of the strings that is used to add correct label for each box.
    PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
    
    NUM_CLASSES = 90
    
    ## Download Model##
    #opener = urllib.request.URLopener()
    #opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
    tar_file = tarfile.open(MODEL_FILE)
    for file in tar_file.getmembers():
      file_name = os.path.basename(file.name)
      if 'frozen_inference_graph.pb' in file_name:
        tar_file.extract(file, os.getcwd())
        
    ## Load a (frozen) Tensorflow model into memory.
    detection_graph = tf.Graph()
    with detection_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')
        
    ## Loading label map
    label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
    categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
    category_index = label_map_util.create_category_index(categories)
    
    def load_image_into_numpy_array(image):
      (im_width, im_height) = image.size
      return np.array(image.getdata()).reshape(
          (im_height, im_width, 3)).astype(np.uint8)
          
    # For the sake of simplicity we will use only 2 images:
    # image1.jpg
    # image2.jpg
    # If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
    PATH_TO_TEST_IMAGES_DIR = 'test_images'
    TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
    
    # Size, in inches, of the output images.
    IMAGE_SIZE = (12, 8)
    
    def run_inference_for_single_image(image, graph):
      with graph.as_default():
        with tf.Session() as sess:
          # Get handles to input and output tensors
          ops = tf.get_default_graph().get_operations()
          all_tensor_names = {output.name for op in ops for output in op.outputs}
          tensor_dict = {}
          for key in [
              'num_detections', 'detection_boxes', 'detection_scores',
              'detection_classes', 'detection_masks'
          ]:
            tensor_name = key + ':0'
            if tensor_name in all_tensor_names:
              tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
                  tensor_name)
          if 'detection_masks' in tensor_dict:
            # The following processing is only for single image
            detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
            detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
            # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
            real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
            detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
            detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
            detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
                detection_masks, detection_boxes, image.shape[0], image.shape[1])
            detection_masks_reframed = tf.cast(
                tf.greater(detection_masks_reframed, 0.5), tf.uint8)
            # Follow the convention by adding back the batch dimension
            tensor_dict['detection_masks'] = tf.expand_dims(
                detection_masks_reframed, 0)
          image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
    
          # Run inference
          output_dict = sess.run(tensor_dict,
                                 feed_dict={image_tensor: np.expand_dims(image, 0)})
    
          # all outputs are float32 numpy arrays, so convert types as appropriate
          output_dict['num_detections'] = int(output_dict['num_detections'][0])
          output_dict['detection_classes'] = output_dict[
              'detection_classes'][0].astype(np.uint8)
          output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
          output_dict['detection_scores'] = output_dict['detection_scores'][0]
          if 'detection_masks' in output_dict:
            output_dict['detection_masks'] = output_dict['detection_masks'][0]
      return output_dict              
    
    for image_path in TEST_IMAGE_PATHS:
      image = Image.open(image_path)
      # the array based representation of the image will be used later in order to prepare the
      # result image with boxes and labels on it.
      image_np = load_image_into_numpy_array(image)
      # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
      image_np_expanded = np.expand_dims(image_np, axis=0)
      # Actual detection.
      output_dict = run_inference_for_single_image(image_np, detection_graph)
      # Visualization of the results of a detection.
      vis_util.visualize_boxes_and_labels_on_image_array(
          image_np,
          output_dict['detection_boxes'],
          output_dict['detection_classes'],
          output_dict['detection_scores'],
          category_index,
          instance_masks=output_dict.get('detection_masks'),
          use_normalized_coordinates=True,
          line_thickness=8)
      plt.figure(figsize=IMAGE_SIZE)
      plt.imshow(image_np)
      plt.show()
      

    以上代码将源码做一下修改:


    改为



    改为(模型已下载放入,不需要再次下载)


    改为(新加plt.show(),不加图片展示不出来)


    自此,已将TensorFlow Object Detection API整合到自己的项目中。

  • 相关阅读:
    接口运用实例
    C# Lambda表达式运用
    图片转换图片流方法(二进制流)
    简单的winform编辑器
    C# OO(初级思想)。
    MVC知识点
    提高sql查询效率
    DataRead 和DataSet区别
    JavaScript内置对象与原生对象【转】
    Cookie,Sesstion,Application 缓存。
  • 原文地址:https://www.cnblogs.com/gmhappy/p/9472426.html
Copyright © 2011-2022 走看看