zoukankan      html  css  js  c++  java
  • Kafka笔记--参数说明及Demo

    参考资料:http://blog.csdn.net/honglei915/article/details/37563647
    参数说明http://ju.outofmemory.cn/entry/119243
    参数说明/Demo:
    http://www.aboutyun.com/thread-9906-1-1.html

    Kafka+Spark:  
    http://shiyanjun.cn/archives/1097.html
    http://ju.outofmemory.cn/entry/84636


    1. Kafka启动:
      1. 先启动所有节点的zookeeper  : 进入ZOOKEEPER_HOME/bin 执行./zkServer.sh start
      2. 启动所有节点的kafka:进入 KAFKA_HOME/bin 执行 ./
    kafka-server-start.sh config/server.properties &  

     

    2. 参数说明

    2.0 boker参数说明 (配置文件位于config/server.properties)

    name默认值描述
    broker.id none 每一个boker都有一个唯一的id作为它们的名字。 这就允许boker切换到别的主机/端口上, consumer依然知道
    enable.zookeeper true 允许注册到zookeeper
    log.flush.interval.messages Long.MaxValue 在数据被写入到硬盘和消费者可用前最大累积的消息的数量
    log.flush.interval.ms Long.MaxValue 在数据被写入到硬盘前的最大时间
    log.flush.scheduler.interval.ms Long.MaxValue 检查数据是否要写入到硬盘的时间间隔。
    log.retention.hours 168 控制一个log保留多长个小时
    log.retention.bytes -1 控制log文件最大尺寸
    log.cleaner.enable false 是否log cleaning
    log.cleanup.policy delete delete还是compat. 其它控制参数还包括log.cleaner.threads,log.cleaner.io.max.bytes.per.second,
    log.cleaner.dedupe.buffer.size,log.cleaner.io.buffer.size,log.cleaner.io.buffer.load.factor,
    log.cleaner.backoff.ms,log.cleaner.min.cleanable.ratio,log.cleaner.delete.retention.ms
    log.dir /tmp/kafka-logs 指定log文件的根目录
    log.segment.bytes 110241024*1024 单一的log segment文件大小
    log.roll.hours 24 * 7 开始一个新的log文件片段的最大时间
    message.max.bytes 1000000 + MessageSet.LogOverhead 一个socket 请求的最大字节数
    num.network.threads 3 处理网络请求的线程数
    num.io.threads 8 处理IO的线程数
    background.threads 10 后台线程序
    num.partitions 1 默认分区数
    socket.send.buffer.bytes 102400 socket SO_SNDBUFF参数
    socket.receive.buffer.bytes 102400 socket SO_RCVBUFF参数
    zookeeper.connect localhost:2182/kafka 指定zookeeper连接字符串, 格式如hostname:port/chroot。chroot是一个namespace
    zookeeper.connection.timeout.ms 6000 指定客户端连接zookeeper的最大超时时间
    zookeeper.session.timeout.ms 6000 连接zk的session超时时间
    zookeeper.sync.time.ms 2000 zk follower落后于zk leader的最长时间


    2.1 producer参数说明(配置文件位于config/producer.properties或者在程序内定义)

    #指定kafka节点列表,用于获取metadata,不必全部指定
        metadata.broker.list=192.168.2.105:9092,192.168.2.106:9092
    
        # 指定分区处理类。默认kafka.producer.DefaultPartitioner,表通过key哈希到对应分区
        #partitioner.class=com.meituan.mafka.client.producer.CustomizePartitioner
    
        # 是否压缩,默认0表示不压缩,1表示用gzip压缩,2表示用snappy压缩。压缩后消息中会有头来指明消息压缩类型,故在消费者端消息解压是透明的无需指定。
        compression.codec=none
          
        # 指定序列化处理类(mafka client API调用说明-->3.序列化约定wiki),默认为kafka.serializer.DefaultEncoder,即byte[]
        serializer.class=com.meituan.mafka.client.codec.MafkaMessageEncoder
        # serializer.class=kafka.serializer.DefaultEncoder
        # serializer.class=kafka.serializer.StringEncoder
    
        # 如果要压缩消息,这里指定哪些topic要压缩消息,默认empty,表示不压缩。
        #compressed.topics=
    
        ########### request ack ###############
        # producer接收消息ack的时机.默认为0.
        # 0: producer不会等待broker发送ack
        # 1: 当leader接收到消息之后发送ack
        # 2: 当所有的follower都同步消息成功后发送ack.
        request.required.acks=0
    
        # 在向producer发送ack之前,broker允许等待的最大时间
        # 如果超时,broker将会向producer发送一个error ACK.意味着上一次消息因为某种
        # 原因未能成功(比如follower未能同步成功)
        request.timeout.ms=10000
        ########## end #####################
    
        # 同步还是异步发送消息,默认“sync”表同步,"async"表异步。异步可以提高发送吞吐量,
        # 也意味着消息将会在本地buffer中,并适时批量发送,但是也可能导致丢失未发送过去的消息
        producer.type=sync
    
        ############## 异步发送 (以下四个异步参数可选) ####################
        # 在async模式下,当message被缓存的时间超过此值后,将会批量发送给broker,默认为5000ms
        # 此值和batch.num.messages协同工作.
        queue.buffering.max.ms = 5000
    
        # 在async模式下,producer端允许buffer的最大消息量
        # 无论如何,producer都无法尽快的将消息发送给broker,从而导致消息在producer端大量沉积
        # 此时,如果消息的条数达到阀值,将会导致producer端阻塞或者消息被抛弃,默认为10000
        queue.buffering.max.messages=20000
    
        # 如果是异步,指定每次批量发送数据量,默认为200
        batch.num.messages=500
    
        # 当消息在producer端沉积的条数达到"queue.buffering.max.meesages"后
        # 阻塞一定时间后,队列仍然没有enqueue(producer仍然没有发送出任何消息)
        # 此时producer可以继续阻塞或者将消息抛弃,此timeout值用于控制"阻塞"的时间
        # -1: 无阻塞超时限制,消息不会被抛弃
        # 0:立即清空队列,消息被抛弃
        queue.enqueue.timeout.ms=-1
        ################ end ###############
    
        # 当producer接收到error ACK,或者没有接收到ACK时,允许消息重发的次数
        # 因为broker并没有完整的机制来避免消息重复,所以当网络异常时(比如ACK丢失)
        # 有可能导致broker接收到重复的消息,默认值为3.
        message.send.max.retries=3
    
        # producer刷新topic metada的时间间隔,producer需要知道partition leader的位置,以及当前topic的情况
        # 因此producer需要一个机制来获取最新的metadata,当producer遇到特定错误时,将会立即刷新
        # (比如topic失效,partition丢失,leader失效等),此外也可以通过此参数来配置额外的刷新机制,默认值600000
        topic.metadata.refresh.interval.ms=60000
    View Code

    2.2 consumer参数说明(配置文件位于config/consumer.properties或者在程序内定义)

        # zookeeper连接服务器地址,此处为线下测试环境配置(kafka消息服务-->kafka broker集群线上部署环境wiki)
        # 配置例子:"127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002"
        zookeeper.connect=192.168.2.225:2181,192.168.2.225:2182,192.168.2.225:2183/config/mobile/mq/mafka
    
        # zookeeper的session过期时间,默认5000ms,用于检测消费者是否挂掉,当消费者挂掉,其他消费者要等该指定时间才能检查到并且触发重新负载均衡
        zookeeper.session.timeout.ms=5000
        zookeeper.connection.timeout.ms=10000
    
        # 指定多久消费者更新offset到zookeeper中。注意offset更新时基于time而不是每次获得的消息。一旦在更新zookeeper发生异常并重启,将可能拿到已拿到过的消息
        zookeeper.sync.time.ms=2000
    
        #指定消费组
        group.id=xxx
    
        # 当consumer消费一定量的消息之后,将会自动向zookeeper提交offset信息
        # 注意offset信息并不是每消费一次消息就向zk提交一次,而是现在本地保存(内存),并定期提交,默认为true
        auto.commit.enable=true
    
        # 自动更新时间。默认60 * 1000
        auto.commit.interval.ms=1000
    
        # 当前consumer的标识,可以设定,也可以有系统生成,主要用来跟踪消息消费情况,便于观察
        conusmer.id=xxx
    
        # 消费者客户端编号,用于区分不同客户端,默认客户端程序自动产生
        client.id=xxxx
    
        # 最大取多少块缓存到消费者(默认10)
        queued.max.message.chunks=50
    
        # 当有新的consumer加入到group时,将会reblance,此后将会有partitions的消费端迁移到新
        # 的consumer上,如果一个consumer获得了某个partition的消费权限,那么它将会向zk注册
        # "Partition Owner registry"节点信息,但是有可能此时旧的consumer尚没有释放此节点,
        # 此值用于控制,注册节点的重试次数.
        rebalance.max.retries=5
    
        # 获取消息的最大尺寸,broker不会像consumer输出大于此值的消息chunk
        # 每次feth将得到多条消息,此值为总大小,提升此值,将会消耗更多的consumer端内存
        fetch.min.bytes=6553600
    
        # 当消息的尺寸不足时,server阻塞的时间,如果超时,消息将立即发送给consumer
        fetch.wait.max.ms=5000
        socket.receive.buffer.bytes=655360
    
        # 如果zookeeper没有offset值或offset值超出范围。那么就给个初始的offset。有smallest、largest、
        # anything可选,分别表示给当前最小的offset、当前最大的offset、抛异常。默认largest
        auto.offset.reset=smallest
    
        # 指定序列化处理类(mafka client API调用说明-->3.序列化约定wiki),默认为kafka.serializer.DefaultDecoder,即byte[]
        derializer.class=com.meituan.mafka.client.codec.MafkaMessageDecoder
    View Code

      

    3. 例:

    接口 KafkaProperties.java

    public interface KafkaProperties {
        final static String zkConnect = "192.168.1.160:2181";
        final static String groupId = "group1";
        final static String topic = "topic1";
        // final static String kafkaServerURL = "192.168.1.160";
        // final static int kafkaServerPort = 9092;
        // final static int kafkaProducerBufferSize = 64 * 1024;
        // final static int connectionTimeOut = 20000;
        // final static int reconnectInterval = 10000;
        // final static String topic2 = "topic2";
        // final static String topic3 = "topic3";
        // final static String clientId = "SimpleConsumerDemoClient";
    }

    生产者 KafkaProducer.java

    import java.util.Properties;
    
    import kafka.producer.KeyedMessage;
    import kafka.producer.ProducerConfig;
    
    public class KafkaProducer extends Thread {
        private final kafka.javaapi.producer.Producer<Integer, String> producer;
        private final String topic;
        private final Properties props = new Properties();
    
        public KafkaProducer(String topic) {
            props.put("serializer.class", "kafka.serializer.StringEncoder");
            props.put("metadata.broker.list", "192.168.1.160:9092"); // 配置kafka端口
            producer = new kafka.javaapi.producer.Producer<Integer, String>(new ProducerConfig(props));
            this.topic = topic;
        }
    
        @Override
        public void run() {
            int messageNo = 1;
            while (true) {
                String messageStr = new String("This is a message, number: " + messageNo);
                System.out.println("Send:" + messageStr);
                producer.send(new KeyedMessage<Integer, String>(topic, messageStr));
                messageNo++;
                try {
                    sleep(1000);
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }
    
    }

    消费者 KafkaConsumer.java

    import java.util.Properties;
    
    import kafka.consumer.ConsumerConfig;
    import kafka.consumer.ConsumerIterator;
    import kafka.consumer.KafkaStream;
    import kafka.javaapi.consumer.ConsumerConnector;
    
    
    public class KafkaConsumer extends Thread {
        private final ConsumerConnector consumer;
        private final String topic;
    
        public KafkaConsumer(String topic) {
            consumer = kafka.consumer.Consumer.createJavaConsumerConnector(createConsumerConfig());
            this.topic = topic;
        }
    
        private static ConsumerConfig createConsumerConfig() {
            Properties props = new Properties();
            props.put("zookeeper.connect", KafkaProperties.zkConnect); // zookeeper的地址
            props.put("group.id", KafkaProperties.groupId); // 组ID
    
            //zk连接超时
            props.put("zookeeper.session.timeout.ms", "40000");
            props.put("zookeeper.sync.time.ms", "200");
            props.put("auto.commit.interval.ms", "1000");
            
            return new ConsumerConfig(props);
        }
    
        @Override
        public void run() {
            Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
            topicCountMap.put(topic, new Integer(1));
            
            Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap     = consumer.createMessageStreams(topicCountMap);
            
            KafkaStream<byte[], byte[]> stream = consumerMap.get(topic).get(0);
            ConsumerIterator<byte[], byte[]> it = stream.iterator();
            while (it.hasNext()) {
                System.out.println("receive:" + new String(it.next().message()));
                try {
                    sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    执行函数 KafkaConsumerProducerDemo.java

    public class KafkaConsumerProducerDemo {
        public static void main(String[] args) {
            KafkaProducer producerThread = new KafkaProducer(KafkaProperties.topic);
            producerThread.start();
    
            KafkaConsumer consumerThread = new KafkaConsumer(KafkaProperties.topic);
            consumerThread.start();
        }
    }

    -----------------------------

    另一个例子:http://www.cnblogs.com/sunxucool/p/3913919.html

    Producer端代码

      1) producer.properties文件:此文件放在/resources目录下

    #partitioner.class=
    metadata.broker.list=127.0.0.1:9092,127.0.0.1:9093
    ##,127.0.0.1:9093
    producer.type=sync
    compression.codec=0
    serializer.class=kafka.serializer.StringEncoder
    ##在producer.type=async时有效
    #batch.num.messages=100
    View Code

      2) LogProducer.java代码样例

    package com.test.kafka;
    
    import java.util.ArrayList;
    import java.util.Collection;
    import java.util.List;
    import java.util.Properties;
    
    import kafka.javaapi.producer.Producer;
    import kafka.producer.KeyedMessage;
    import kafka.producer.ProducerConfig;
    public class LogProducer {
    
        private Producer<String,String> inner;
        public LogProducer() throws Exception{
            Properties properties = new Properties();
            properties.load(ClassLoader.getSystemResourceAsStream("producer.properties"));
            ProducerConfig config = new ProducerConfig(properties);
            inner = new Producer<String, String>(config);
        }
    
        
        public void send(String topicName,String message) {
            if(topicName == null || message == null){
                return;
            }
            KeyedMessage<String, String> km = new KeyedMessage<String, String>(topicName,message);
            inner.send(km);
        }
        
        public void send(String topicName,Collection<String> messages) {
            if(topicName == null || messages == null){
                return;
            }
            if(messages.isEmpty()){
                return;
            }
            List<KeyedMessage<String, String>> kms = new ArrayList<KeyedMessage<String, String>>();
            for(String entry : messages){
                KeyedMessage<String, String> km = new KeyedMessage<String, String>(topicName,entry);
                kms.add(km);
            }
            inner.send(kms);
        }
        
        public void close(){
            inner.close();
        }
        
        /**
         * @param args
         */
        public static void main(String[] args) {
            LogProducer producer = null;
            try{
                producer = new LogProducer();
                int i=0;
                while(true){
                    producer.send("test-topic", "this is a sample" + i);
                    i++;
                    Thread.sleep(2000);
                }
            }catch(Exception e){
                e.printStackTrace();
            }finally{
                if(producer != null){
                    producer.close();
                }
            }
    
        }
    
    }
    View Code

    五.Consumer端

      1) consumer.properties:文件位于/resources目录下

    zookeeper.connect=127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183
    ##,127.0.0.1:2182,127.0.0.1:2183
    # timeout in ms for connecting to zookeeper
    zookeeper.connectiontimeout.ms=1000000
    #consumer group id
    group.id=test-group
    #consumer timeout
    #consumer.timeout.ms=5000
    View Code

      2) LogConsumer.java代码样例

    package com.test.kafka;
    
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
    import java.util.Properties;
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    
    import kafka.consumer.Consumer;
    import kafka.consumer.ConsumerConfig;
    import kafka.consumer.ConsumerIterator;
    import kafka.consumer.KafkaStream;
    import kafka.javaapi.consumer.ConsumerConnector;
    import kafka.message.MessageAndMetadata;
    public class LogConsumer {
    
        private ConsumerConfig config;
        private String topic;
        private int partitionsNum;
        private MessageExecutor executor;
        private ConsumerConnector connector;
        private ExecutorService threadPool;
        public LogConsumer(String topic,int partitionsNum,MessageExecutor executor) throws Exception{
            Properties properties = new Properties();
            properties.load(ClassLoader.getSystemResourceAsStream("consumer.properties"));
            config = new ConsumerConfig(properties);
            this.topic = topic;
            this.partitionsNum = partitionsNum;
            this.executor = executor;
        }
        
        public void start() throws Exception{
            connector = Consumer.createJavaConsumerConnector(config);
            Map<String,Integer> topics = new HashMap<String,Integer>();
            topics.put(topic, partitionsNum);
            Map<String, List<KafkaStream<byte[], byte[]>>> streams = connector.createMessageStreams(topics);
            List<KafkaStream<byte[], byte[]>> partitions = streams.get(topic);
            threadPool = Executors.newFixedThreadPool(partitionsNum);
            for(KafkaStream<byte[], byte[]> partition : partitions){
                threadPool.execute(new MessageRunner(partition));
            } 
        }
    
            
        public void close(){
            try{
                threadPool.shutdownNow();
            }catch(Exception e){
                //
            }finally{
                connector.shutdown();
            }
            
        }
        
        class MessageRunner implements Runnable{
            private KafkaStream<byte[], byte[]> partition;
            
            MessageRunner(KafkaStream<byte[], byte[]> partition) {
                this.partition = partition;
            }
            
            public void run(){
                ConsumerIterator<byte[], byte[]> it = partition.iterator();
                while(it.hasNext()){
                    MessageAndMetadata<byte[],byte[]> item = it.next();
                    System.out.println("partiton:" + item.partition());
                    System.out.println("offset:" + item.offset());
                    executor.execute(new String(item.message()));//UTF-8
                }
            }
        }
        
        interface MessageExecutor {
            
            public void execute(String message);
        }
        
        /**
         * @param args
         */
        public static void main(String[] args) {
            LogConsumer consumer = null;
            try{
                MessageExecutor executor = new MessageExecutor() {
                    
                    public void execute(String message) {
                        System.out.println(message);
                        
                    }
                };
                consumer = new LogConsumer("test-topic", 2, executor);
                consumer.start();
            }catch(Exception e){
                e.printStackTrace();
            }finally{
    //            if(consumer != null){
    //                consumer.close();
    //            }
            }
    
        }
    
    }
    View Code
  • 相关阅读:
    CC DGCD:Dynamic GCD——题解
    BZOJ2243:[SDOI2011]染色——题解
    POJ1990:MooFest——题解
    POJ2299:Ultra-QuickSort——题解
    POJ2352:Stars——题解
    模板:树链剖分
    BZOJ1036:[ZJOI2008]树的统计——题解
    国务院正式“回应”马云:绝对不允许孩子们在30年后找不到工作!
    接口测试用例设计实践总结
    接口测试用例设计实践总结
  • 原文地址:https://www.cnblogs.com/gnivor/p/4934265.html
Copyright © 2011-2022 走看看