1.tf.nn.conv2d
conv2d( input, filter, strides, padding, use_cudnn_on_gpu=True, data_format='NHWC', name=None )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
input | 是 | tensor | 是一个 4 维的 tensor,即 [ batch, in_height, in_width, in_channels ](若 input 是图像,[ 训练时一个 batch 的图片数量, 图片高度, 图片宽度, 图像通道数 ]) |
filter | 是 | tensor | 是一个 4 维的 tensor,即 [ filter_height, filter_width, in_channels, out_channels ](若 input 是图像,[ 卷积核的高度,卷积核的宽度,图像通道数,卷积核个数 ]),filter 的 in_channels 必须和 input 的 in_channels 相等 |
strides | 是 | 列表 | 长度为 4 的 list,卷积时候在 input 上每一维的步长,一般 strides[0] = strides[3] = 1 |
padding | 是 | string | 只能为 " VALID "," SAME " 中之一,这个值决定了不同的卷积方式。VALID 丢弃方式;SAME:补全方式 |
use_cudnn_on_gpu | 否 | bool | 是否使用 cudnn 加速,默认为 true |
data_format | 否 | string | 只能是 " NHWC ", " NCHW ",默认 " NHWC " |
name | 否 | string | 运算名称 |
import tensorflow as tf a = tf.constant([1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0],dtype=tf.float32,shape=[1,5,5,1]) b = tf.constant([1,0,1,0,1,0,1,0,1],dtype=tf.float32,shape=[3,3,1,1]) c = tf.nn.conv2d(a,b,strides=[1, 2, 2, 1],padding='VALID') d = tf.nn.conv2d(a,b,strides=[1, 2, 2, 1],padding='SAME') with tf.Session() as sess: print ("c shape:") print (c.shape) print ("c value:") print (sess.run(c)) print ("d shape:") print (d.shape) print ("d value:") print (sess.run(d))
执行结果:
c shape: (1, 2, 2, 1) c value: [[[[ 4.] [ 4.]] [[ 2.] [ 4.]]]] d shape: (1, 3, 3, 1) d value: [[[[ 2.] [ 3.] [ 1.]] [[ 1.] [ 4.] [ 3.]] [[ 0.] [ 2.] [ 1.]]]]
2.tf.nn.relu
relu( features, name=None )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
features | 是 | tensor | 是以下类型float32, float64, int32, int64, uint8, int16, int8, uint16, half |
name | 否 | string | 运算名称 |
import tensorflow as tf a = tf.constant([1,-2,0,4,-5,6]) b = tf.nn.relu(a) with tf.Session() as sess: print (sess.run(b))
执行结果:
[1 0 0 4 0 6]
3.tf.nn.max_pool
max_pool( value, ksize, strides, padding, data_format='NHWC', name=None )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
value | 是 | tensor | 4 维的张量,即 [ batch, height, width, channels ],数据类型为 tf.float32 |
ksize | 是 | 列表 | 池化窗口的大小,长度为 4 的 list,一般是 [1, height, width, 1],因为不在 batch 和 channels 上做池化,所以第一个和最后一个维度为 1 |
strides | 是 | 列表 | 池化窗口在每一个维度上的步长,一般 strides[0] = strides[3] = 1 |
padding | 是 | string | 只能为 " VALID "," SAME " 中之一,这个值决定了不同的池化方式。VALID 丢弃方式;SAME:补全方式 |
data_format | 否 | string | 只能是 " NHWC ", " NCHW ",默认" NHWC " |
name | 否 | string | 运算名称 |
import tensorflow as tf a = tf.constant([1,3,2,1,2,9,1,1,1,3,2,3,5,6,1,2],dtype=tf.float32,shape=[1,4,4,1]) b = tf.nn.max_pool(a,ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='VALID') c = tf.nn.max_pool(a,ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME') with tf.Session() as sess: print ("b shape:") print (b.shape) print ("b value:") print (sess.run(b)) print ("c shape:") print (c.shape) print ("c value:") print (sess.run(c))
执行结果:
b shape: (1, 2, 2, 1) b value: [[[[ 9.] [ 2.]] [[ 6.] [ 3.]]]] c shape: (1, 2, 2, 1) c value: [[[[ 9.] [ 2.]] [[ 6.] [ 3.]]]]
4.tf.nn.dropout
dropout( x, keep_prob, noise_shape=None, seed=None, name=None )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
x | 是 | tensor | 输出元素是 x 中的元素以 keep_prob 概率除以 keep_prob,否则为 0 |
keep_prob | 是 | scalar Tensor | dropout 的概率,一般是占位符 |
noise_shape | 否 | tensor | 默认情况下,每个元素是否 dropout 是相互独立。如果指定 noise_shape,若 noise_shape[i] == shape(x)[i],该维度的元素是否 dropout 是相互独立,若 noise_shape[i] != shape(x)[i] 该维度元素是否 dropout 不相互独立,要么一起 dropout 要么一起保留 |
seed | 否 | 数值 | 如果指定该值,每次 dropout 结果相同 |
name | 否 | string | 运算名称 |
import tensorflow as tf a = tf.constant([1,2,3,4,5,6],shape=[2,3],dtype=tf.float32) b = tf.placeholder(tf.float32) c = tf.nn.dropout(a,b,[2,1],1) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print (sess.run(c,feed_dict={b:0.75}))
执行结果:
[[ 0. 0. 0. ] [ 5.33333349 6.66666651 8. ]]
5. tf.nn.sigmoid_cross_entropy_with_logits
sigmoid_cross_entropy_with_logits( _sentinel=None, labels=None, logits=None, name=None )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
_sentinel | 否 | None | 没有使用的参数 |
labels | 否 | Tensor | type, shape 与 logits相同 |
logits | 否 | Tensor | type 是 float32 或者 float64 |
name | 否 | string | 运算名称 |
创建源文件 sigmoid_cross_entropy_with_logits.py
import tensorflow as tf x = tf.constant([1,2,3,4,5,6,7],dtype=tf.float64) y = tf.constant([1,1,1,0,0,1,0],dtype=tf.float64) loss = tf.nn.sigmoid_cross_entropy_with_logits(labels = y,logits = x) with tf.Session() as sess: print (sess.run(loss))
执行结果:
[ 3.13261688e-01 1.26928011e-01 4.85873516e-02 4.01814993e+00 5.00671535e+00 2.47568514e-03 7.00091147e+00]
6.tf.truncated_normal
truncated_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
shape | 是 | 1 维整形张量或 array | 输出张量的维度 |
mean | 否 | 0 维张量或数值 | 均值 |
stddev | 否 | 0 维张量或数值 | 标准差 |
dtype | 否 | dtype | 输出类型 |
seed | 否 | 数值 | 随机种子,若 seed 赋值,每次产生相同随机数 |
name | 否 | string | 运算名称 |
import tensorflow as tf initial = tf.truncated_normal(shape=[3,3], mean=0, stddev=1) print(tf.Session().run(initial))
执行结果:
[[ 0.18815269 -0.4689253 0.63908994] [ 0.01734953 -0.46975166 -0.25023392] [ 1.12803638 -1.84143591 0.15422213]]
7.tf.constant
constant( value, dtype=None, shape=None, name='Const', verify_shape=False )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
value | 是 | 常量数值或者 list | 输出张量的值 |
dtype | 否 | dtype | 输出张量元素类型 |
shape | 否 | 1 维整形张量或 array | 输出张量的维度 |
name | 否 | string | 张量名称 |
verify_shape | 否 | Boolean | 检测 shape 是否和 value 的 shape 一致,若为 Fasle,不一致时,会用最后一个元素将 shape 补全 |
#!/usr/bin/python import tensorflow as tf import numpy as np a = tf.constant([1,2,3,4,5,6],shape=[2,3]) b = tf.constant(-1,shape=[3,2]) c = tf.matmul(a,b) e = tf.constant(np.arange(1,13,dtype=np.int32),shape=[2,2,3]) f = tf.constant(np.arange(13,25,dtype=np.int32),shape=[2,3,2]) g = tf.matmul(e,f) with tf.Session() as sess: print (sess.run(a)) print ("##################################") print (sess.run(b)) print ("##################################") print (sess.run(c)) print ("##################################") print (sess.run(e)) print ("##################################") print (sess.run(f)) print ("##################################") print (sess.run(g))
执行结果:
[[1 2 3] [4 5 6]] ################################## [[-1 -1] [-1 -1] [-1 -1]] ################################## [[ -6 -6] [-15 -15]] ################################## [[[ 1 2 3] [ 4 5 6]] [[ 7 8 9] [10 11 12]]] ################################## [[[13 14] [15 16] [17 18]] [[19 20] [21 22] [23 24]]] ################################## [[[ 94 100] [229 244]] [[508 532] [697 730]]]
8.tf.placeholder
placeholder( dtype, shape=None, name=None )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
dtype | 是 | dtype | 占位符数据类型 |
shape | 否 | 1 维整形张量或 array | 占位符维度 |
name | 否 | string | 占位符名称 |
#!/usr/bin/python import tensorflow as tf import numpy as np x = tf.placeholder(tf.float32,[None,3]) y = tf.matmul(x,x) with tf.Session() as sess: rand_array = np.random.rand(3,3) print(sess.run(y,feed_dict={x:rand_array}))
执行结果:
[[ 0.64431196 0.68349576 0.57412398] [ 0.84553117 1.64796805 0.7788316 ] [ 0.84342241 0.8947317 0.8024016 ]]
9.tf.nn.bias_add 将偏差项 bias 加到 value 上面,可以看做是 tf.add 的一个特例,其中 bias 必须是一维的,并且维度和 value 的最后一维相同,数据类型必须和 value 相同。
bias_add( value, bias, data_format=None, name=None )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
value | 是 | 张量 | 数据类型为 float, double, int64, int32, uint8, int16, int8, complex64, or complex128 |
bias | 是 | 1 维张量 | 维度必须和 value 最后一维维度相等 |
data_format | 否 | string | 数据格式,支持 ' NHWC ' 和 ' NCHW ' |
name | 否 | string | 运算名称 |
#!/usr/bin/python import tensorflow as tf import numpy as np a = tf.constant([[1.0, 2.0],[1.0, 2.0],[1.0, 2.0]]) b = tf.constant([2.0,1.0]) c = tf.constant([1.0]) sess = tf.Session() print (sess.run(tf.nn.bias_add(a, b))) #print (sess.run(tf.nn.bias_add(a,c))) error print ("##################################") print (sess.run(tf.add(a, b))) print ("##################################") print (sess.run(tf.add(a, c)))
执行结果:
[[ 3. 3.] [ 3. 3.] [ 3. 3.]] ################################## [[ 3. 3.] [ 3. 3.] [ 3. 3.]] ################################## [[ 2. 3.] [ 2. 3.] [ 2. 3.]]
10.tf.reduce_mean
reduce_mean( input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
input_tensor | 是 | 张量 | 输入待求平均值的张量 |
axis | 否 | None、0、1 | None:全局求平均值;0:求每一列平均值;1:求每一行平均值 |
keep_dims | 否 | Boolean | 保留原来的维度(例如不会从二维矩阵降为一维向量) |
name | 否 | string | 运算名称 |
reduction_indices | 否 | None | 和 axis 等价,被弃用 |
#!/usr/bin/python import tensorflow as tf import numpy as np initial = [[1.,1.],[2.,2.]] x = tf.Variable(initial,dtype=tf.float32) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) print(sess.run(tf.reduce_mean(x))) print(sess.run(tf.reduce_mean(x,0))) #Column print(sess.run(tf.reduce_mean(x,1))) #row
执行结果:
1.5 [ 1.5 1.5] [ 1. 2.]
11.tf.squared_difference 计算张量 x、y 对应元素差平方
squared_difference( x, y, name=None )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
x | 是 | 张量 | 是 half, float32, float64, int32, int64, complex64, complex128 其中一种类型 |
y | 是 | 张量 | 是 half, float32, float64, int32, int64, complex64, complex128 其中一种类型 |
name | 否 | string | 运算名称 |
#!/usr/bin/python import tensorflow as tf import numpy as np initial_x = [[1.,1.],[2.,2.]] x = tf.Variable(initial_x,dtype=tf.float32) initial_y = [[3.,3.],[4.,4.]] y = tf.Variable(initial_y,dtype=tf.float32) diff = tf.squared_difference(x,y) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) print(sess.run(diff))
执行结果:
[[ 4. 4.] [ 4. 4.]]
12.tf.square 计算张量对应元素平方
square( x, name=None )
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
x | 是 | 张量 | 是 half, float32, float64, int32, int64, complex64, complex128 其中一种类型 |
name | 否 | string | 运算名称 |
#!/usr/bin/python import tensorflow as tf import numpy as np initial_x = [[1.,1.],[2.,2.]] x = tf.Variable(initial_x,dtype=tf.float32) x2 = tf.square(x) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) print(sess.run(x2))
执行结果:
[[ 1. 1.] [ 4. 4.]]
13.tf.Variable 维护图在执行过程中的状态信息,例如神经网络权重值的变化。
__init__( initial_value=None, trainable=True, collections=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None, expected_shape=None, import_scope=None )
参数名 | 类型 | 说明 |
---|---|---|
initial_value | 张量 | Variable 类的初始值,这个变量必须指定 shape 信息,否则后面 validate_shape 需设为 False |
trainable | Boolean | 是否把变量添加到 collection GraphKeys.TRAINABLE_VARIABLES 中(collection 是一种全局存储,不受变量名生存空间影响,一处保存,到处可取) |
collections | Graph collections | 全局存储,默认是 GraphKeys.GLOBAL_VARIABLES |
validate_shape | Boolean | 是否允许被未知维度的 initial_value 初始化 |
caching_device | string | 指明哪个 device 用来缓存变量 |
name | string | 变量名 |
dtype | dtype | 如果被设置,初始化的值就会按照这个类型初始化 |
expected_shape | TensorShape | 要是设置了,那么初始的值会是这种维度 |
#!/usr/bin/python import tensorflow as tf initial = tf.truncated_normal(shape=[10,10],mean=0,stddev=1) W=tf.Variable(initial) list = [[1.,1.],[2.,2.]] X = tf.Variable(list,dtype=tf.float32) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) print ("##################(1)################") print (sess.run(W)) print ("##################(2)################") print (sess.run(W[:2,:2])) op = W[:2,:2].assign(22.*tf.ones((2,2))) print ("###################(3)###############") print (sess.run(op)) print ("###################(4)###############") print (W.eval(sess)) #computes and returns the value of this variable print ("####################(5)##############") print (W.eval()) #Usage with the default session print ("#####################(6)#############") print (W.dtype) print (sess.run(W.initial_value)) print (sess.run(W.op)) print (W.shape) print ("###################(7)###############") print (sess.run(X))
执行结果:
##################(1)################ [[-0.14252207 0.43376675 0.75065768 0.89276749 1.16391671 0.39532429 -0.56278807 -0.49753642 0.23130737 -0.51338279] [-0.43028545 -1.24873769 -0.73239309 0.434468 -0.97399759 0.13766721 -0.6361087 -0.82712436 1.71831048 -0.44968474] [-0.96064204 -0.83682173 0.26545268 0.22578485 0.65014762 -0.30830157 -1.57317054 -0.35661098 1.40849245 -0.37030414] [-0.37272176 0.73461288 0.39292559 -1.40008056 -0.37535539 0.24140523 1.6811192 -0.48886588 1.15467834 0.61565816] [-0.39579329 -0.23154807 -1.01895738 -0.95105737 1.24795806 -0.03846256 -1.71738017 -0.80132687 0.53553152 -0.06413679] [-0.97320521 -0.24279226 1.36213648 1.56002438 -1.11646473 -0.35991025 0.91412318 0.97508883 -1.16207206 -0.68734062] [ 0.49044254 -1.87386227 -0.70803815 -0.6591838 0.08034691 -1.24559033 -0.29389012 -0.2189652 -1.08279467 -0.0175346 ] [-0.5608176 1.08259249 1.66278481 -0.33977437 0.42875817 0.55927169 0.76387608 0.37792665 0.85006535 1.05124724] [ 1.75331545 -0.6333124 -0.10046791 -0.1780251 -1.31002116 1.90098214 0.84569824 -1.42502522 -0.67300171 0.68910873] [-1.7385 -0.9806214 -0.32636395 -0.50020444 -0.53104508 -0.33903483 -0.35751811 -0.03737256 -1.26822579 -1.38264406]] ##################(2)################ [[-0.14252207 0.43376675] [-0.43028545 -1.24873769]] ###################(3)############### [[ 2.20000000e+01 2.20000000e+01 7.50657678e-01 8.92767489e-01 1.16391671e+00 3.95324290e-01 -5.62788069e-01 -4.97536421e-01 2.31307372e-01 -5.13382792e-01] [ 2.20000000e+01 2.20000000e+01 -7.32393086e-01 4.34468001e-01 -9.73997593e-01 1.37667209e-01 -6.36108696e-01 -8.27124357e-01 1.71831048e+00 -4.49684739e-01] [ -9.60642040e-01 -8.36821735e-01 2.65452683e-01 2.25784853e-01 6.50147617e-01 -3.08301568e-01 -1.57317054e+00 -3.56610984e-01 1.40849245e+00 -3.70304137e-01] [ -3.72721761e-01 7.34612882e-01 3.92925590e-01 -1.40008056e+00 -3.75355393e-01 2.41405234e-01 1.68111920e+00 -4.88865882e-01 1.15467834e+00 6.15658164e-01] [ -3.95793289e-01 -2.31548071e-01 -1.01895738e+00 -9.51057374e-01 1.24795806e+00 -3.84625569e-02 -1.71738017e+00 -8.01326871e-01 5.35531521e-01 -6.41367882e-02] [ -9.73205209e-01 -2.42792264e-01 1.36213648e+00 1.56002438e+00 -1.11646473e+00 -3.59910250e-01 9.14123178e-01 9.75088835e-01 -1.16207206e+00 -6.87340617e-01] [ 4.90442544e-01 -1.87386227e+00 -7.08038151e-01 -6.59183800e-01 8.03469121e-02 -1.24559033e+00 -2.93890119e-01 -2.18965203e-01 -1.08279467e+00 -1.75346043e-02] [ -5.60817599e-01 1.08259249e+00 1.66278481e+00 -3.39774370e-01 4.28758174e-01 5.59271693e-01 7.63876081e-01 3.77926648e-01 8.50065351e-01 1.05124724e+00] [ 1.75331545e+00 -6.33312404e-01 -1.00467913e-01 -1.78025097e-01 -1.31002116e+00 1.90098214e+00 8.45698237e-01 -1.42502522e+00 -6.73001707e-01 6.89108729e-01] [ -1.73850000e+00 -9.80621397e-01 -3.26363951e-01 -5.00204444e-01 -5.31045079e-01 -3.39034826e-01 -3.57518107e-01 -3.73725556e-02 -1.26822579e+00 -1.38264406e+00]] ###################(4)############### [[ 2.20000000e+01 2.20000000e+01 7.50657678e-01 8.92767489e-01 1.16391671e+00 3.95324290e-01 -5.62788069e-01 -4.97536421e-01 2.31307372e-01 -5.13382792e-01] [ 2.20000000e+01 2.20000000e+01 -7.32393086e-01 4.34468001e-01 -9.73997593e-01 1.37667209e-01 -6.36108696e-01 -8.27124357e-01 1.71831048e+00 -4.49684739e-01] [ -9.60642040e-01 -8.36821735e-01 2.65452683e-01 2.25784853e-01 6.50147617e-01 -3.08301568e-01 -1.57317054e+00 -3.56610984e-01 1.40849245e+00 -3.70304137e-01] [ -3.72721761e-01 7.34612882e-01 3.92925590e-01 -1.40008056e+00 -3.75355393e-01 2.41405234e-01 1.68111920e+00 -4.88865882e-01 1.15467834e+00 6.15658164e-01] [ -3.95793289e-01 -2.31548071e-01 -1.01895738e+00 -9.51057374e-01 1.24795806e+00 -3.84625569e-02 -1.71738017e+00 -8.01326871e-01 5.35531521e-01 -6.41367882e-02] [ -9.73205209e-01 -2.42792264e-01 1.36213648e+00 1.56002438e+00 -1.11646473e+00 -3.59910250e-01 9.14123178e-01 9.75088835e-01 -1.16207206e+00 -6.87340617e-01] [ 4.90442544e-01 -1.87386227e+00 -7.08038151e-01 -6.59183800e-01 8.03469121e-02 -1.24559033e+00 -2.93890119e-01 -2.18965203e-01 -1.08279467e+00 -1.75346043e-02] [ -5.60817599e-01 1.08259249e+00 1.66278481e+00 -3.39774370e-01 4.28758174e-01 5.59271693e-01 7.63876081e-01 3.77926648e-01 8.50065351e-01 1.05124724e+00] [ 1.75331545e+00 -6.33312404e-01 -1.00467913e-01 -1.78025097e-01 -1.31002116e+00 1.90098214e+00 8.45698237e-01 -1.42502522e+00 -6.73001707e-01 6.89108729e-01] [ -1.73850000e+00 -9.80621397e-01 -3.26363951e-01 -5.00204444e-01 -5.31045079e-01 -3.39034826e-01 -3.57518107e-01 -3.73725556e-02 -1.26822579e+00 -1.38264406e+00]] ####################(5)############## [[ 2.20000000e+01 2.20000000e+01 7.50657678e-01 8.92767489e-01 1.16391671e+00 3.95324290e-01 -5.62788069e-01 -4.97536421e-01 2.31307372e-01 -5.13382792e-01] [ 2.20000000e+01 2.20000000e+01 -7.32393086e-01 4.34468001e-01 -9.73997593e-01 1.37667209e-01 -6.36108696e-01 -8.27124357e-01 1.71831048e+00 -4.49684739e-01] [ -9.60642040e-01 -8.36821735e-01 2.65452683e-01 2.25784853e-01 6.50147617e-01 -3.08301568e-01 -1.57317054e+00 -3.56610984e-01 1.40849245e+00 -3.70304137e-01] [ -3.72721761e-01 7.34612882e-01 3.92925590e-01 -1.40008056e+00 -3.75355393e-01 2.41405234e-01 1.68111920e+00 -4.88865882e-01 1.15467834e+00 6.15658164e-01] [ -3.95793289e-01 -2.31548071e-01 -1.01895738e+00 -9.51057374e-01 1.24795806e+00 -3.84625569e-02 -1.71738017e+00 -8.01326871e-01 5.35531521e-01 -6.41367882e-02] [ -9.73205209e-01 -2.42792264e-01 1.36213648e+00 1.56002438e+00 -1.11646473e+00 -3.59910250e-01 9.14123178e-01 9.75088835e-01 -1.16207206e+00 -6.87340617e-01] [ 4.90442544e-01 -1.87386227e+00 -7.08038151e-01 -6.59183800e-01 8.03469121e-02 -1.24559033e+00 -2.93890119e-01 -2.18965203e-01 -1.08279467e+00 -1.75346043e-02] [ -5.60817599e-01 1.08259249e+00 1.66278481e+00 -3.39774370e-01 4.28758174e-01 5.59271693e-01 7.63876081e-01 3.77926648e-01 8.50065351e-01 1.05124724e+00] [ 1.75331545e+00 -6.33312404e-01 -1.00467913e-01 -1.78025097e-01 -1.31002116e+00 1.90098214e+00 8.45698237e-01 -1.42502522e+00 -6.73001707e-01 6.89108729e-01] [ -1.73850000e+00 -9.80621397e-01 -3.26363951e-01 -5.00204444e-01 -5.31045079e-01 -3.39034826e-01 -3.57518107e-01 -3.73725556e-02 -1.26822579e+00 -1.38264406e+00]] #####################(6)############# <dtype: 'float32_ref'> [[ -1.33923304e+00 3.98314148e-01 -1.05487180e+00 -2.22615644e-01 7.82311618e-01 9.53226268e-01 -2.97039151e-01 -3.89685869e-01 8.23029280e-01 7.19715893e-01] [ 1.04759359e+00 8.69891942e-01 -5.51353216e-01 -4.16979402e-01 -8.62451375e-01 -1.88378954e+00 1.63407588e+00 -1.31232488e+00 -1.96803153e+00 -4.86700237e-01] [ -3.07712853e-01 9.84556377e-02 4.30263966e-01 1.04724443e+00 7.22615659e-01 -5.49771845e-01 -1.07801104e+00 -3.93206358e-01 7.11512685e-01 9.57030654e-01] [ -1.05264592e+00 6.57385737e-02 7.53750354e-02 1.01429641e+00 -8.63034368e-01 1.23717473e-03 -6.88091516e-01 -3.96133095e-01 8.48116100e-01 -9.45674896e-01] [ 5.37974119e-01 4.54147071e-01 -2.98751473e-01 -1.59583509e+00 4.50350285e-01 6.21135473e-01 -1.53476131e+00 -1.97713211e-01 8.77439082e-01 4.83142734e-01] [ -5.70582092e-01 -5.23053765e-01 1.98891927e-02 8.01557481e-01 -3.45719725e-01 1.27735651e+00 1.71628571e+00 -7.70039737e-01 6.76081061e-01 8.73943627e-01] [ 1.96820140e+00 -9.69326258e-01 -7.51312554e-01 -1.13384604e+00 -6.39117777e-01 -7.42796242e-01 9.72097814e-01 1.74299920e+00 7.48745322e-01 2.23225936e-01] [ -2.75906771e-01 -1.16707611e+00 -1.25743651e+00 -7.03301072e-01 -1.98549139e+00 -7.08913743e-01 -3.58558416e-01 3.72454494e-01 -5.64896911e-02 8.41890931e-01] [ -1.32631826e+00 8.53675187e-01 -1.28031313e-01 2.12832183e-01 -2.22371653e-01 -9.89087045e-01 2.03618892e-02 -1.93884909e+00 -1.28941548e+00 2.91048825e-01] [ -1.33420026e+00 5.87837324e-02 -1.05547898e-01 2.05826104e-01 1.52838349e+00 1.29717004e+00 -5.17632477e-02 -1.08887863e+00 -3.42454642e-01 -1.61216035e-02]] None (10, 10) ###################(7)############### [[ 1. 1.] [ 2. 2.]]