给不明白深度学习能干什么的同学,感受下深度学习的power
import tensorflow as tf import numpy as np #使用numpy生成100个随机点 x_data=np.random.rand(100) y_data=x_data*0.1+0.2 #这里我们设定已知直线的k为0.1 b为0.2得到y_data #构造一个线性模型 b=tf.Variable(0.) k=tf.Variable(0.) y=k*x_data+b #二次代价函数(白话:两数之差平方后取 平均值) loss=tf.reduce_mean(tf.square(y_data-y)) #定义一个梯度下降法来进行训练的优化器(其实就是按梯度下降的方法改变线性模型k和b的值,注意这里的k和b一开始初始化都为0.0,后来慢慢向0.1、0.2靠近) optimizer=tf.train.GradientDescentOptimizer(0.2) #这里的0.2是梯度下降的系数也可以是0.3... #最小化代价函数(训练的方式就是使loss值最小,loss值可能是随机初始化100个点与模型拟合出的100个点差的平方相加...等方法) train=optimizer.minimize(loss) #初始化变量 init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for step in range(201): sess.run(train) if step%20==0: print(step,sess.run([k,b])) #这里使用fetch的方式只是打印k、b的值,每20次打印一下,改变k、b的值是梯度下降优化器的工作
贴一张我的运行结果:
看,k和b在一步步逼近0.1和0.2,是不是很神奇!最终的误差仅为0.000026526和0.00001402,厉害吧,感受到深度学习的强大了么,这里还只是一个神经元,如果成千上万个甚至几十万个会有什么效果呢?
目录:
- tensorflow简介、目录
- tensorflow中的图(02-1)
- tensorflow变量的使用(02-2)
- tensorflow中的Fetch、Feed(02-3)
- tensorflow版helloworld---拟合线性函数的k和b(02-4)
- tensorflow非线性回归(03-1)
- MNIST手写数字分类simple版(03-2)
- 二次代价函数、交叉熵(cross-entropy)、对数似然代价函数(log-likelihood cost)(04-1)
- 多层网络通过防止过拟合,增加模型的准确率(04-2)
- 修改优化器进一步提升准确率(04-3)
- 手写数字识别-卷积神经网络cnn(06-2)
- 循环神经网络rnn与长短时记忆神经网络简述(07-2)
- 循环神经网络lstm代码实现(07-3)
- tensorflow模型保存和使用08
- 下载inception v3 google训练好的模型并解压08-3
- 使用inception v3做各种图像分类识别08-4
- word2vec模型训练简单案例
- word2vec+textcnn文本分类简述及代码