zoukankan      html  css  js  c++  java
  • 数据筛选,清洗,汇总

    数据的筛选

    # 列的筛选
    df.column_name	df['column_name']
    # 行的筛选
    df.loc[condition,:]
    # 行列的筛选
    df.loc[condition,:colunm_list]
    
    # example
    sec_buildings.size
    sec_buildings['size']
    
    sec_buildings[['name','tot_amt','price_unit']]
    
    
    sec_buildings.loc[sec_buildings.region == '浦东',:]
    
    sec_buildings.loc[(sec_buildings.region == '浦东') & (sec_buildings['size'] > 150),:]
    
    sec_buildings.loc[(sec_buildings.region == '浦东') & (sec_buildings['size'] > 150),['name','tot_amt','price_unit']]
    

    数据的清洗

    # 数据类型的修改
    pd.to_datetime
    df.column.astype
    # 冗余数据的识别与处理
    df.duplicated(subset=)
    df.drop_duplicates(inplace=)
    # 异常值的识别与处理
    1.Z得分法
    2.分位数法
    3.距离法
    参考文档
    https://mp.weixin.qq.com/s/aWTDJtafY9XHZdHdOUaqXw
    mp.weixin.qq.com/s/728HfX6VFi0tN6MBkFrTsA
    # 缺失值的识别与处理
    df.isnull()
    df.fillna(value={})
    df.dropna()
    


    Example
    cars = pd.read_csv('sec_cars.csv',sep=',',engine='python', encoding='utf8')
    cars.head()
    

    cars.dtypes
    

    cars.Boarding_time = pd.to_datetime(cars.Boarding_time, format='%Y年%m月')
    cars.head()
    cars.dtypes
    

     cars.New_price = cars.New_price.str[:-1].astype(float)
        cars.head()
    

    # 冗余数据的识别和处理
    online = pd.read_excel('data_test04.xlsx', )
    online
    

    online.duplicated(subset='appname')
    online.drop_duplicates(inplace=True)
    online
    

    # 缺失数据的筛选与清洗
    test = pd.read_excel('data_test05.xlsx', )
    test
    

    test.isnull().any(axis=0)
    

    # 处理方式:删除
    test.dropna()
    

    # 处理方式:填充
    test.fillna(value = {'gender':test.gender.mode()[0], 'age':test.age.mean(),'income':test.income.median()}, inplace = True)
    test
    

    数据的汇总

    # 分组汇总
    groupby "方法":用于汇总前,设定被分组的变量
    arrgrgate "方法":可基于groupby的结果做进一步的统计汇总
    ps:在aggregate阶段,需以字典的形式传递参数,用于选择被统计的变量和对应的统计方法
    
    
    # example
    # 通过groupby方法,指定分组变量
    grouped = diamonds.groupby(by = ['color','cut'])
    # 对分组变量进行统计汇总
    result = grouped.aggregate({'color':np.size, 'carat':np.min,
    'price':np.mean, 'table ':np.max})
    result
    # 调整变量名的顺序
    result = pd.DataFrame(result, columns=['color','carat','price','table '])
    result
    # 数据集重命名
    result.rename(columns={'color':'counts','carat':'min_weight','price':'avg_price',
    'table ':'max_face_width'}, inplace=True)
    

    数据的合并与连接

    Example
    # 构造数据集
    df3 = pd.DataFrame({'id':[1,2,3,4,5],'name':['张三','李四','王二','丁一','赵五'],
    'age':[27,24,25,23,25],'gender':['男','男','男','女','女']})
    df4 = pd.DataFrame({'Id':[1,2,2,4,4,4,5], 'score':[83,81,87,75,86,74,88]
    'kemu':['科目1','科目1','科目2','科目1','科目2','科目3','科目1']})
    df5 = pd.DataFrame({'id':[1,3,5],'name':['张三','王二','赵五'],
    'income':[13500,18000,15000]})
    
    # 三表的数据连接
    # 首先df3和df4连接
    merge1 = pd.merge(left = df3, right = df4, how = 'left', left_on='id', right_on='Id')
    merge1
    # 再将连接结果与df5连接
    merge2 = pd.merge(left = merge1, right = df5, how = 'left')
    merge2
    

  • 相关阅读:
    福大软工 · 第八次作业(课堂实战)- 项目UML设计(团队)
    第六次作业
    福大软工1816 · 第五次作业
    福大软工1816 · 第四次作业
    福大软工1816 · 第三次作业
    福大软工1816 · 第二次作业
    软工实践-团队现场编程
    qwe
    软工冲刺-Alpha 冲刺 (3/10)
    软工时间-Alpha 冲刺 (2/10)
  • 原文地址:https://www.cnblogs.com/godlover/p/13930787.html
Copyright © 2011-2022 走看看